首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A compacted soil liner (CSL) has been widely used as a single barrier layer or a part of composite barrier layer in the landfill final cover system to prevent water infiltration into solid wastes for its acceptable hydraulic permeability. This study was conducted to test whether the CSL was also effective in prohibiting landfill gas emissions. For this purpose, three different compaction methods (i.e., reduced, standard, and modified Proctor methods) were used to prepare the soil specimens, with nitrogen as gas, and with water and heptane as liquid permeants. Measured gas permeability ranged from 2.03x10(-10) to 4.96x10(-9)cm(2), which was a magnitude of two or three orders greater than hydraulic permeability (9.60x10(-13) to 1.05x10(-11)cm(2)). The difference between gas and hydraulic permeabilities can be explained by gas slippage, which makes gas more permeable, and by soil-water interaction, which impedes water flow and then makes water less permeable. This explanation was also supported by the result that a liquid permeability measured with heptane as a non-polar liquid was similar to the intrinsic gas permeability. The data demonstrate that hydraulic requirement for the CSL is not enough to control the gas emissions from a landfill.  相似文献   

2.
The soil and two aquifers under an active lumber mill in Libby, Montana, had been contaminated from 1946 to 1969 by uncontrolled releases of creosote and pentachlorophenol (PCP). In 1983, because the contaminated surface soil and the shallower aquifer posed immediate risks to human health and the natural environment, the U.S. Environmental Protection Agency placed the site on its National Priorities List. Feasibility studies in 1987 and 1988 determined that in situ bioremediation would help clean up this aquifer and that biological treatment would help clean up the contaminated soils. This article outlines the studies that led to a 1988 EPA record of decision and details the EPA-approved remedial plan implemented starting in 1989; EPA estimates a total cost of about $15 million (in 1988 dollars). The plan involves extensive excavation and biological treatment of shallow contaminated soils in two lined and bermed land treatment units, extraction of heavily contaminated groundwater, an aboveground bioreactor treatment system, and injection of oxygenated water to the contaminant source area, as well as to other on-site areas affected by the shallower aquifer's contaminant plume.  相似文献   

3.
Phytoremediation is a new technology that uses specially selected metal-accumulating plants as an attractive and economical method to clean up soils contaminated with heavy metals and radionuclides. The integration of specially selected metal-accumulating crop plants (Brassica juncea (L) Czern.) with innovative soil amendments allows plants to achieve high biomass and metal accumulation rates. In a recent study conducted at a lead-contaminated site in Trenton, New Jersey, the soil was treated with phytoremediation using successive crops of B. juncea combined with soil amendments. Through phytoremediation, the average surface soil lead concentration was reduced by 13 percent. In addition, the target soil concentration of 400 mg/kg was achieved in approximately 72 percent of the treated area in one cropping season.  相似文献   

4.
A method of analyzing soil vapor extraction (SVE) laboratory data using a sample of contaminated soil is presented to allow the calculation of equilibrium constants for an assumed gas/soil equilibrium expression. The constants can be determined for any compound measured in the exit gas. A Freundlich equilibrium expression was shown to represent the equilibrium in a soil contaminated with trichloroethylene (TCE) and several aromatic solvents.  相似文献   

5.
Permeable biobarrier systems (PBSs) are being recognized as low‐cost passive bioremediation technologies for chlorinated organic contamination. This innovative technology can play a crucial and effective role in site restorations. Laboratory‐scale experiments were conducted to investigate the biodegradation of trichloroethylene (TCE) to ethylene in shallow groundwater through the use of a PBS enhanced by bioaugmentation at the U.S. Department of Energy's Savannah River Site (SRS). Two composts and two plant amendments, eucalyptus mulch (EM) and corncobs (CC), were examined for their effectiveness at creating and maintaining conditions suitable for TCE anaerobic dechlorination. These materials were evaluated for their (1) nutrient and organic carbon content, (2) TCE sorption characteristics, and (3) longevity of release of nutrients and soluble carbon in groundwater to support TCE dechlorination. Native bacteria in the columns had the ability to convert TCE to dichloroethenes (DCEs); however, the inoculation with the TCE‐degrading culture greatly increased the rate of biodegradation. This caused a significant increase in by‐product concentration, mostly in the form of DCEs and vinyl chloride (VC) followed by a slow degradation to ethylene. Of the tested amendments, eucalyptus mulch was the most effective at supporting the reductive dechlorination of TCE. Corncobs created a very acidic condition in the column that inhibited dechlorination. © 2007 Wiley Periodicals, Inc.  相似文献   

6.
7.
The rate at which liquids can be added to a vertical well, the lateral zone of impact of the well, and the liquids volume needed to wet the waste within the zone of impact of the well are the key inputs needed to design a vertical well system. This paper presents design charts that can be used to estimate these inputs as a function of municipal solid waste properties (porosity, hydraulic conductivity, and anisotropy ratio), well dimensions (radius and screen length), and injection pressure. SEEP/W modeling was conducted to estimate the key design inputs for a range of conditions practically encountered for a vertical well installed in landfilled waste. The flow rate, lateral zone of impact of a well, liquids volume added, and injection pressure were normalized with the waste properties and well dimensions to formulate dimensionless variables. A series of design charts were created to present dimensionless steady-state flow rate, lateral zone of impact, and the dimensionless liquid volume needed to reach a steady-state condition, as a function of dimensionless input variables. By using dimensionless variables formulated for this work, these charts permit the user to estimate the steady-state design variables described above for a wide range of configurations and conditions beyond those simulated without the need for further modeling. The results of the study suggest that the lateral extent of the well can be estimated using Darcy’s equation and assuming saturated unit-gradient vertical flow regime below the well bottom. An example problem is presented to illustrate the use of the design charts. The scenario described in the example problem was also modeled with SEEP/W, and the results were compared with those obtained from the design charts to demonstrate the validity of design charts for scenarios other than those used for the development of the design charts. The methodology presented in this paper should be thought of as a means to provide a set of bounds that an engineer can use along with their judgment in the design of a system for a specific site.  相似文献   

8.
This article describes portland cement-based solidification/stabilization (S/S) treatment of heavy metal-contaminated soil. The soil was discovered during highway construction in West Jordan, Utah. Environmental Chemical Corporation (ECC) performed an emergency response to remediate the soil under contract with the EPA and the United States Bureau of Reclamation (USBR). The soil was treated by S/S. Treatment of the soil, contaminated with lead and arsenic, involved: (1) excavation, (2) size segregation, (3) reduction of oversized particles, (4) addition and mixture of portland cement and cement kiln dust, and (5) beneficial reuse of the treated soil as a subbase. S/S treatment successfully reduced Toxicity Characteristic Leaching Procedure (TCLP) concentrations of the contaminants to below regulatory levels.  相似文献   

9.
In tests conducted for the Canadian government on sediment from Thunder Bay Harbour, Ontario, the BioGenesis washing process was demonstrated to be effective in remediating contaminated harbor sediments. Removal efficiencies for 16 polyaromatic hydrocarbons (PAHs) in concentrations exceeding 4,000 parts per million averaged 90 to 95 percent in pilot tests. These results are significant because, until now, washing processes have not proven effective in cleaning the small-size particles of silt and clay that make up most underwater sediments. In Thunder Bay, 81 percent of the particles were less than 38 microns (medium silt) in size. The tests on Thunder Bay sediment were conducted under the auspices of the Contaminated Sediment Treatment Technology Program of Environment Canada's Wastewater Technology Centre. Thunder Bay Harbour is one of 43 “areas of concern” identified by the International Joint Commission of Great Lakes Water Quality.  相似文献   

10.
In June 2001, the Massachusetts Department of Environmental Protection (DEP) installed a permeable reactive barrier (PRB) within a roadway in Needham, Massachusetts, to treat a plume of chlorinated solvents migrating toward two public water‐supply wells located in the adjacent town of Wellesley, Massachusetts. The solvents originated from an electronics manufacturer located approximately 2,300 feet upgradient of the roadway and 5,200 feet upgradient of the public supply wells. Chlorinated solvents, primarily trichloroethene (TCE), had migrated past the roadway to within 300 feet of the public supply wells. Two contaminant transport models prepared by the DEP's design contractor and the EPA indicated that the plume would reach the well field if no response actions were taken. To mitigate the future impact to the municipal well field, the DEP decided to install a PRB composed of zero‐valent granular iron across the path of the plume along Central Avenue in Needham. Though several dozen PRBs have been installed at sites worldwide and the technology is no longer considered innovative, the application of the technology in a roadway that receives 17,000 vehicles per day within a residential neighborhood is unique and presented difficulties not typically associated with PRB installations. The Needham PRB was also one of the first zero‐valent iron PRBs installed using the slurry trench method to treat chlorinated compounds. © 2002 Wiley Periodicals, Inc.  相似文献   

11.
The effect of Tween 80 and selected bacteria additions on the bioremediation of PAH contaminated landfill soil (70.38mgkg(-1)) was evaluated in a slurry phase bioreactor. A phenanthrene-degrading consortium was selected by enrichment cultures and used as autochthonous inoculum. The Tween 80 addition increased the aqueous concentration of both high and low molecular weight PAHs. In the experiment with Tween 80 and inoculum addition, added microorganisms improved (>90%) the biodegradation of two- and three-ring PAHs as well as of the four-ring PAHs pyrene and fluoranthene. Biodegradation of the higher molecular weight PAHs was about 30% in experiments with Tween 80 addition, with and without inoculum addition.  相似文献   

12.
The former Bermite site north of Los Angeles, California, was used to manufacture various explosives and related products containing energetic compounds, including perchlorate. Remediation of perchlorate in site soil and groundwater is being conducted to meet regulatory requirements and allow planned redevelopment activities to proceed. The general approach to perchlorate remediation of shallow soil at the site includes excavation of affected soils followed by ex situ bioremediation. Glycerin was chosen for use as an electron donor because of its stability, safety, low cost, and regulatory acceptance. However, full‐scale bioremediation operation with glycerin initially resulted in inconsistent results despite consistent perchlorate biodegradation observed in treatability study microcosms. To eliminate the inconsistency and optimize the biotreatment process, additional studies were performed in the field on parallel tracks to determine crucial factor(s) that influenced inconsistent breakdown of perchlorate in site soils. Total Kjeldahl nitrogen (TKN) was determined to be a significant factor limiting perchlorate biodegradation. The addition of di‐ammonium phosphate (DAP) resulted in the consistent and complete perchlorate removal, generally within two weeks of incubation with a median destruction rate of about 200 μg/kg/day. Soil processing rates were gradually increased over the year, and, by the summer, approximately 2,000 to 2,500 tons of soil were being processed per day with a total of approximately 160,000 tons processed by the end of July. The total unit treatment cost for the process is about approximately $35/ton. The glycerin‐DAP process is playing a major role in the remediation of this 1,000‐acre former industrial site. © 2008 Wiley Periodicals, Inc.  相似文献   

13.
Evaluation of leaching and extraction procedures for soil and waste   总被引:1,自引:1,他引:0  
Laboratory leaching tests may be used for source term determination as a basis for risk assessment for soil-groundwater pathways on contaminated sites. In order to evaluate different leaching procedures, batch extraction tests and percolation tests were performed using three reference materials produced from contaminated soil, demolition waste and municipal solid waste incinerator bottom ash. Emphasis was placed on the investigation of the leachability of the heavy metals copper and chromium, polycyclic aromatic hydrocarbons (PAHs) and the anions chloride and sulfate. Significant discrepancies between column experiments and batch/extraction tests were found for the release of PAHs and to a lesser extent for the heavy metals Cu and Cr. Additionally interlaboratory comparisons were conducted based on different leaching tests with the reference materials and evaluated using the criteria of comparability and reproducibility. The best reproducibility was achieved for all investigated substances in column tests. The reproducibility of batch tests was acceptable except for PAHs. The results from the experimental work will help establish standardized and feasible laboratory procedures as fundamental for substance specific risk assessment of contaminated sites.  相似文献   

14.
A gas-solid fluidized bed separator using various bed materials was used to separate shredded municipal bulky waste (SBW). Using 290 microm glass beads as the bed material, the apparent density of the fluidized bed was 1.5 g/cm(3) and the SBW could be separated into combustibles such as wood, paper and plastics and incombustibles such as metals and glass. The overall efficiency (Newton's efficiency) of the separation was calculated to be 0.93. In order to obtain high efficiency, the superficial velocity must be adjusted so that the fluidized bed is agitated moderately and at the same time there is no weak fluidized region. Using a mixture of particles of nylon shot and 68 microm glass beads, the apparent density of the fluidized mixture bed could be varied between 0.63 and 0.99 g/cm(3) by changing the mixing ratio of the two materials. In the case of a mixing ratio of 20% for glass beads, an apparent density of 0.65 g/cm(3) was produced, in which wood and paper components were recovered while plastics remained in the bed to give a final overall efficiency of 0.88.  相似文献   

15.
1,4‐Dioxane entered the environment as a result of historic leaks and spills in the production area at an industrial facility in the southeastern coastal plain. The areal extent of the 1,4‐dioxane plume is several hundred acres and is largely contained on the site. Land use adjacent to the plant property is primarily undeveloped (wetlands or woods) or industrial, with a small area of mixed land use (commercial/residential) to the southwest and north. The surficial aquifer is a relatively simple hydrogeologic system with well‐defined boundaries and is comprised of a 50‐ to 70‐foot‐thick deposit of alluvial/fluvial sand and gravel that overlies an aquitard in excess of 100 feet thick. A groundwater flow model, developed and calibrated using field‐measured data, was used for the fate‐and‐transport modeling of 1,4‐dioxane. The flow‐and‐transport model, combined with the evaluation of other site geochemical data, was used to support the selection of monitored natural attenuation (MNA) as the proposed groundwater remedy for the site. Since the active sources of contamination have been removed and the modeling/field data demonstrated that the plume was stable and not expanding, the proposed MNA approach was accepted and approved by the regulatory agency for implementation in 2004. Subsequent accumulated data confirm that concentrations in the 1,4‐dioxane plume are declining as predicted by the fate‐and‐transport modeling. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
In Sweden, leaching tests with deionized water (D.W.) are utilized in risk assessment of materials entering landfills, but implementation of these results to evaluate the risk of spreading of pollutants in the environment is difficult. One problem is that most leaching procedures only consider heavy metals release, whereas organic pollutants are left out. The aim of the present study was to assess the possible pollutant mitigation in four remediated soils, three with heavy metals and one with polycyclic aromatic hydrocarbons (PAH) contamination. The mitigation was evaluated by standardized batch and column leaching tests utilizing three different leaching solutions: D.W., a weak ionic solution (0.001 M CaCl2) and an artificially made soil water (ASW). In general, batch leaching tests implied larger contaminant removal than column leaching test, possibly due to the more rough treatment of the soil particles, and guidelines would at times be exceeded by the batch leaching test but not by column leaching tests. Utilization of CaCl2 was found to release less heavy metal than D.W., whereas the metals mobilized by ASW were removed from solution by the filtration of soil leachates. Low molecular weight PAH was most efficiently mobilized by CaCl2, while D.W. worked better for high molecular weight PAH. Despite very low initial PAH-concentrations, tap- and groundwater criteria were exceeded by all leaching solutions.  相似文献   

17.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

18.
19.
Six oil spill booms produced by five manufacturers for use as fire resistant booms, were tested at the Minerals Management Service's Ohmsett Facility, NWS-Earle, Leonardo, New Jersey. The tests were conducted between July 16, 1996 and October 4, 1996. Prior to being exposed to any fire, the booms were tested for: first loss tow speed, loss rate, critical tow speed, and wave conformance. No fires were used during these tests. Four of the booms performed within speed and rate loss ranges that have been measured for commercial non-fire resistant booms. One boom was found to be superior in wave conformance and critical tow speed. However, this boom was at the lower edge of the range for first loss tow speed. A prototype boom, with a unique paddle wheel operating principal was the sixth boom included in the study. This boom was found to need further development.  相似文献   

20.
During the period of 22 August–12 October 1998, seven commercial fire booms were involved in burn testing at the US Coast Guard Fire and Safety Test Detachment Facility in Mobile, Alabama in accordance with the proposed protocol, American Society for Testing and Materials-F20. Four of the seven booms survived the test sequence and were shipped from Mobile, Alabama to the Minerals Management Service’s OHMSETT facility for additional tests including first loss, gross loss, tow speed, oil loss rate, and critical tow speed. The four booms showed the same trend in response to various wave conditions; the long sinusoidal waves improved containment performance and the short choppy waves degraded performance. One of the four booms achieved slightly higher first and gross oil loss rate tests. One boom demonstrated superior stability at high tow speeds. The results of this test report are consistent with the evaluation of fire booms that had been previously tested at OHMSETT, but also show a slight increase in performance. The tests indicate that the existing fire booms can contain oil in currents up to 1 knot and in various wave conditions after being exposed to multiple burns. This information will be used by the Coast Guard to develop policies and procedures for the in situ burning (ISB) of oil during a spill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号