首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Closure often of the eleven waste management units covering almost seventy-five acres at the U.S. Department of Energy's Oak Ridge Y-12 Plant has been completed. Costing about $47 million, DOE's accelerated Closure and Post Closure Program (CAPCA) has involved structural waste stabilization and installation of a multimedia cap to contain ferrous metals, salts, uranium, solvents, ethylenediamine tetraacetic acid (EDTA), oils and coolants, asbestos, and material contaminated with radioisotopes. Designs for closure of the remaining waste unit—used for disposing depleted uranium chips, metals, oxides, organic and caustic chemicals, aged ethers, and more—are being prepared now; they will address the potentially explosive and pyrophoric nature of these wastes. This article describes CAPCA's innovative design and construction methods, as well as how its management coordinated the tight schedules mandated by agreements with federal and state regulatory agencies.  相似文献   

2.
As a result of nuclear processing activities started back in the 1950s, the environment in the vicinity of the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, and surrounding watersheds has been contaminated by nearly 1,000 tons of elementary mercury. To comply with the state and federal surface water quality standards, a significant reduction in mercury concentration to parts‐per‐trillion levels has been proposed. In order to analyze the mercury cycle in the environment and provide forecasting capabilities for the flow and transport of mercury within the Upper East Fork Poplar Creek (UEFPC) watershed, an integrated surface and subsurface flow and transport model has been developed using the hydrodynamic and transport numerical package, MIKE, developed by the Danish Hydraulic Institute. The model has been constructed and calibrated using an extensive collection of historical records (i.e., hydrological data, and mercury concentration measurements in groundwater, soil, and sediment) obtained from the Oak Ridge Environmental Information System database. Daily fluctuations in stream flow, as a result of scattered rainfall, flooding, and flow augmentation, resuspend the contaminated streambed sediments and/or erode the polluted streambank soil and provide a secondary source of mercury to the creek. In order to investigate the significance of sediment‐mercury interactions on the fate and transport of mercury within the UEFPC study domain, simulations were performed for two different cases (i.e., with and without consideration of sediment‐mercury interactions). Computed total suspended solids and mercury concentrations at the integration point of the creek are compared with the corresponding historical records in both cases. As confirmed by the numerical simulations, a substantial portion of the mercury detected in the river is likely in the form of sediment particle–bound mercury (i.e., mercury particulates). © 2012 Wiley Periodicals, Inc.  相似文献   

3.
There have been more than 100,000 confirmed releases of petroleum from underground storage tanks (USTs) in the United States and its territories. The 10,000-gallon spill and cleanup of unleaded gasoline, detailed in this article, that occurred from 1988 to 1990 on Cape Cod, Massachusetts, illustrates the author's argument that electric pneumatic-hammer soil probes are the fastest, most convenient, and least costly way of performing the soil-gas surveys needed to locate spilled petroleum product, evaluate vapor intrusion into basements, and determine the extent of groundwater contamination for remediation purposes. Current state soil-gas requirements are also included.  相似文献   

4.
On-site oxygen generation was chosen as the most effective and efficient source of pure oxygen for enhancing biodegradation at a hydrocarbon-contaminated oil and gas well site in northern Michigan. Contaminants include benzene, toluene, ethylbenzene, and xylenes released through natural gas dehydration practices that were halted in 1985. Free product and contaminated soil were completely removed from the source area in spring 1989, leaving only the groundwater plume for further remediation. This article discusses the project's two phases—a purge and treat system and the pure-oxygen bioremediation system—each costing $75,000. It also details the combined system's technical elements (including purge and monitoring wells, oxygen generator, and drainfield), and cleanup results (including how pure oxygen has helped destroy contaminants, not merely move them to other media).  相似文献   

5.
From September through November 1994, the U.S. Environmental Protection Agency (EPA) conducted a field demonstration of the remediation of highly contaminated groundwater at the Nascolite Superfund site located in Millville, New Jersey. Besides high concentrations of the major contaminant, methyl methacrylate (MMA), the groundwater also contained small amounts of volatile and semivolatile organic compounds. ZenoGem® technology, an integrated bioreactor and ultrafiltration membrane system, was employed for this demonstration project. Approximately 30,000 gallons of groundwater containing MMA in concentrations of 567 to 9,500 milligrams per liter (mg/L) and chemical oxygen demand (COD) values ranging from 1,490 to 19,600 mg/L was treated. The demonstration focused on the system's ability to remove MMA and reduce COD from the groundwater. Results of the three‐month demonstration showed that average MMA and COD removal efficiencies were greater than 99.9 and 86.9, respectively. The total cost of treatment, depending on the duration of the project, is estimated to vary from $0.22 to $0.55 (in 1994 dollars) per gallon of groundwater treated. © 2001 John Wiley & Sons.  相似文献   

6.
There has been a great deal of focus on methyl tertiary butyl ether (MTBE) over the past few years by local, state, and federal government, industry, public stakeholders, the environmental services market, and educational institutions. This focus is, in large part, the result of the widespread detection of MTBE in groundwater and surface waters across the United States. The presence of MTBE in groundwater has been attributed primarily to the release from underground storage tank (UST) systems at gasoline service stations. MTBE's physical and chemical properties are different than other constituents of gasoline that have traditionally been cause for concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)]. This difference in properties is why MTBE migrates differently in the subsurface environment and exhibits different constraints relative to mitigation and remediation of MTBE once it has been released to subsurface soils and groundwater. Resource Control Corporation (RCC) has accomplished the remediation of MTBE from subsurface soil and groundwater at multiple sites using ozone. RCC has successfully applied ozone at several sites with different lithologies, geochemistry, and concentrations of constituents of concern. This article presents results from several projects utilizing in situ chemical oxidation with ozone. On these projects MTBE concentrations in groundwater were reduced to remedial objectives usually sooner than anticipated. © 2002 Wiley Periodicals, Inc.  相似文献   

7.
Remediation of halogenated organic compounds—such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs)—poses a challenge because these compounds are resistant to microbial attack and to degradation by many common chemicals. Since the mid-1980s, the Environmental Protection Agency's (EPA's) Office of Research and Development in Cincinnati, Ohio—the National Risk Management Research Laboratory (NRMRL)—has funded research and development efforts to develop specialized, chemical dehalogenation processes for detoxifying PCBs and related compounds. NRMRL owns domestic rights for “basic process” patents on a chemical dehalogenation process commonly known as Base Catalyzed Decomposition (BCD). EPA has licensed the process to two firms for use in the United States. This article summarizes laboratory-scale, pilot-scale, and field performance data on BCD technology collected to date by various governmental, academic, and private organizations.  相似文献   

8.
Two remote-controlled robotic submersible vehicles and an automated shredder are helping remove and dispose of highly reactive, sometimes explosive materials, dumped into a water-filled quarry at the U.S. Department of Energy's reservation in Oak Ridge, Tennessee. Human workers never enter the four-acre site, except for well-planned equipment maintenance and to shoot holes from a protected but into the retrieved containers, releasing pressure and exposing the contents to air and water. During its approximately two years of operation, the $8 million project has retrieved more than 15,000 items from the thirty feet of water at the bottom of the quarry.  相似文献   

9.
Per‐ and polyfluoroalkyl substances (PFAS) are highly resistant to biotic and abiotic degradation and can withstand very high temperatures before breaking down. The storage of PFAS‐impacted water and sediments in a holding pond or stockpiled investigation or remedial action‐derived waste is occurring on an increasing number of sites. The most common PFAS water treatment options include granular‐activated carbon and resins and the most common soil treatment options have been primarily limited to excavation, offsite incineration, and, in some cases, soil stabilization. An increasing number of states across the United States are establishing part per trillion PFAS guidance levels for drinking water. Removing PFAS from soils removes PFAS source impacts to groundwater. In this study, volatilization of PFAS from soil treated using in situ thermal heating is evaluated as a treatment method to achieve a high degree of PFAS removal from soils. The evaluation of temperatures needed to achieve removal is described. To minimize vapor treatment required for PFAS thermal remediation, a scrubber was incorporated into the treatment train to transfer PFAS to the liquid phase in a concentrated, low‐volume solution. Vapor‐liquid equilibrium behavior and the extent of PFAS volatilization from impacted soil over a range of temperatures were evaluated. Results showed that heating soil to 350°C and 400°C reduces PFAS soil concentrations by 99.91% and 99.998%, respectively. It was also confirmed that sulfonate‐based PFAS generally required higher temperatures for volatilization to occur than carboxylate‐based PFAS.  相似文献   

10.
Trichloroethylene (TCE) is a toxic organic compound, which can adversely affect human health. The chemical is one of the most frequently found contaminants in groundwater in the United States and around the world. A landfill in Maryland contaminated with high levels of TCE decades ago was added to the U.S. Environmental Protection Agency's National Priority List (NPL) in 1994. A biowall was installed on the site in 2013 to promote the bioremediation of TCE and subsequently of its degradation products. Six-year monitoring data indicated a steady removal of >99% groundwater TCE at the wall since installation. However, a concurrent buildup of intermediate byproducts was observed downgradient of the wall. An examination of the entire system was necessary to find the reason behind the inefficiency of the biowall. In this study, the background of the site, remediation plan, and installation were assessed. Monitoring data, including the concentration of TCE and its degradation byproducts, and geochemical and physical characteristics were evaluated to understand the conditions and challenges facing decision-makers of this project and possible options to improve biowall efficacy.  相似文献   

11.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Akzo Nobel's Macro Porous Polymer Extraction (MPPE) technology effectively removes dissolved hydrocarbons from groundwater via liquid-liquid extraction with an innovative medium. Excellent performance in removal of chlorinated, aromatic, and aliphatic solvents, coupled with simple, robust design, make MPPE an attractive process for groundwater remediation applications. Hydrocarbon-contaminated water is passed through a column packed with MPPE particles. An extraction fluid, immobilized within the polymer matrix, removes the hydrocarbons from the water. All hydrocarbons with affinity for the extraction fluid (compared to water) are removed. Regeneration is accomplished in situ with low-pressure steam. The steam volatilizes the hydrocarbons but not theimmobilized extraction fluid. Volatilized hydrocarbons are condensed and then separated from condensate by gravity. The hydrocarbon product is available for recycle or reuse. MPPE systems achieve removal efficiencies of 99.99 percent for wide varieties and combinations of aliphatic, aromatic, and chlorinated compounds. For a broad range of mass loadings and effluent requirements, especially rigorous ones, the MPPE system offers lower investment and operating costs than traditional water treatment technologies. Currently, 14 industrial units are running or under construction in the United States and Europe. Eight of these are treating groundwater.  相似文献   

13.
Fenton's reagent in its conventional form, although effective for contaminant treatment, is impractical from an in‐situ field application perspective due to low pH requirements (i.e., pH 3‐4), and limited reagent mobility when introduced into the subsurface. Modified Fenton's processes that use chelated‐iron catalysts and stabilized hydrogen peroxide have been developed with the goal of promoting effective in‐situ field application under native pH conditions (i.e., pH 5‐7), while extending the longevity of hydrogen peroxide. Laboratory experiments conducted in soil columns packed with organic soil to compare modified Fenton's catalysts with conventional catalysts (acidified iron [II]) indicated superior mobility and sorption characteristics for modified Fenton's catalysts. Furthermore, the acidic pH of a conventional catalyst was buffered to the native soil range, leading to increased iron precipitation/adsorption following permeation through the soil column. The chelates present within the modified Fenton's catalyst showed greater affinity toward iron compared with the native soil and, hence, minimized iron loss through adsorption during the permeation process even at pH 5‐7. Field effectiveness of the modified Fenton's process was demonstrated at a former dry‐cleaning facility located in northeast Florida. Preliminary laboratory‐scale experiments were conducted on soil‐slurry and groundwater samples to test the process efficacy for remediation of chlorinated solvents. Based on successful experimental results that indicated a 94 percent (soil slurry) to 99 percent (groundwater) reduction of cis‐1,2‐DCE, PCE, and TCE, a field‐scale treatment program was initiated utilizing a plurality of dual‐zone direct push injection points installed in a grid fashion throughout the site. Results of treatment indicated a 72 percent reduction in total chlorinated contamination detected in the site groundwater following the first injection event; the reduction increased to 90 percent following the second injection event. © 2002 Wiley Periodicals Inc.  相似文献   

14.
This article presents an analysis of remedial approaches, costs, and time required to remediate dry cleaner sites in the United States based on data compiled by the State Coalition for the Remediation of Dry Cleaners (SCRD). Trends in soil and groundwater remedy selection are identified and discussed. Median costs and the time required to remediate dry cleaner sites are presented. In addition, median costs and the duration of soil and groundwater remediation for the most widely used remedial approaches are reported. The analysis is intended to serve the needs of stakeholders, including responsible parties, consultants, regulators, and litigants, as well as real estate developers, banks, and other holders of portfolios of impacted dry cleaner sites by providing quantitative results useful for planning and transactional analysis. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

16.
Dry cleaners are the largest users of perchloroethene (PCE) solvents in the United States. Releases from dry cleaners to soil and groundwater, however, remain largely unstudied. This article presents a database of 137 chlorinated solvent plumes at dry cleaners in Texas. The data indicate that PCE plumes are generally shorter in extent than those from industrial sites. Degradation products were observed at more than 80 percent of the sites with groundwater contamination. Calculated attenuation rates are on the order of one‐to‐three‐year half‐lives for PCE and its degradation products. The estimated cleanup timeframe for calculated attenuation rates is < 50 years. More research is needed to understand the presence of organic carbon sources at dry cleaners and its implications for natural attenuation. © 2004 Wiley Periodicals, Inc.  相似文献   

17.
范真真  罗霂  郭丽  梁睿  吕巍 《化工环保》2019,39(2):213-219
随着页岩气开发技术的突破与发展,我国已成为继美国、加拿大之后第三个实现页岩气工业化生产的国家。而由页岩气开发伴随的地下水污染、生态破坏等环境问题亦不可忽视。本文通过分析中美页岩气开发过程中的环境管理政策、管理模式,提出加快完善我国页岩气开发环境管理体系及环境监管的建议:1)形成页岩气开发全过程环境管理体系;2)强化页岩气开发的区块规划环评,落实生态保护红线和资源利用上线要求;3)规范项目环境影响评价,提高页岩气环境管理要求;4)在制定页岩气开发污染控制相关标准时纳入开采工艺过程的环保管理要求。  相似文献   

18.
Halogenated and nonhalogenated hydrocarbon contaminants are currently found in natural waterways, groundwater, and soils as a result of spills and careless disposal practices. The development of proper treatment methodologies for the waste streams producing this environmental damage is now a subject of growing concern. A significant number of these waste stream compounds are chemically stable and are thus resistant to environmental degradation. Numerous researchers have investigated the use of ionizing radiation to decompose chlorinated hydrocarbons in diverse matrices and have proposed various free-radical-induced reaction mechanisms. This article is divided into two sections. First, we present data on experimentally measured, radiolytically induced decomposition of hazardous wastes and toxic substances using accelerator-generated bremsstrahlung sources and gamma radiation from cobalt-60. Data are presented on the radiolytically induced reduction in concentration of volatile organic compounds (VOCs) dissolved in water and in air, polychlorinated biphenyls (PCBs) dissolved in oil, high explosives dissolved in groundwater, and chemical weapon surrogates. The results of these studies suggest the potential use of ionizing radiation as a method of hazardous waste treatment. The second section of this article describes the technical aspects of a field-scale radiolytic decomposition site cleanup demonstration using an electron accelerator. A portable, commercially available electron accelerator was set up at the Lawrence Livermore National Laboratory's (LLNL's) Site 300, a Superfund site, where vacuum extraction wells were removing trichloroethylene (TCE) vapor from a ground spill into the unsaturated soil zone. The accelerator was retrofitted into the existing vacuum extraction system such that the extracted TCE-containing vapor passed through the accelerator beam for treatment. The concentration of TCE in the vapor was reduced by an amount dependent on the accelerator beam power. Production of reaction products in the vapor was measured as a function of absorbed dose.  相似文献   

19.
Treatment of perchlorate‐contaminated groundwater using highly selective, regenerable ion‐exchange technology has been recently demonstrated at Edwards Air Force Base, California. At an influent concentration of about 450 μg/l ClO4?, the bifunctional anion‐exchange resin bed treated approximately 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO4? occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO4?. The spent resin bed was successfully regenerated using the FeCl3?HCl regeneration technique recently developed at the Oak Ridge National Laboratory, and nearly 100 percent of sorbed ClO4? was displaced or recovered after elution with as little as about two bed volumes of the regenerant solution. In addition, a new methodology was developed to completely destroy ClO4? in the FeCl3?HCl solution so that the disposal of perchlorate‐containing hazardous wastes could be eliminated. It is therefore anticipated that these treatment and regeneration technologies may offer an efficient and cost‐effective means to remove ClO4? from contaminated groundwater with significantly reduced generation of waste requiring disposal. © 2002 Wiley Periodicals, Inc.  相似文献   

20.
Permeable barriers are structures installed in situ to treat contaminated groundwater. Pollutants are removed as contaminated groundwater flows through a barrier material. A compost/sand barrier and a plant covered permeable barrier with soil/sand and peat/sand were tested in pilot-scale to treat creosote-contaminated groundwater by sorption and biological removal in situ. Outlet concentrations of the barriers were consistently low during the 29 months of operation. Although sorption sites were filled up with polycyclic aromatic hydrocarbons, they seemed to be regenerated because of biodegradation under aerobic conditions. The vegetated section was least efficient, probably because of lack of oxygen, hence it could not be determined if the plants had a positive effect. As long as biodegradation is efficient the barrier is expected to function for several more years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号