首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Soil vapor extraction (SVE) systems are typically designed based on the results of a vadose‐zone pumping test (transient or steady‐state) using a pressure criterion to establish the zone of influence (ZOI). A common problem associated with pressure‐based SVE design is overestimating the ZOI of the extraction well. As a result, design strategies based upon critical pore‐ gas velocity (CPGV) have become more common. Field tests were conducted at the Savannah River Site (SRS) to determine the influence of a vapor extraction well based upon both a pressure and pore‐ gas velocity design criterion. The results from these tests show that an SVE system designed based upon a CPGV is more robust and will have shorter cleanup times due to increased flow throughout the treatment zone. Pressure‐based SVE design may be appropriate in applications where soil gas containment is the primary objective; however, in cases where the capture and removal of contaminated soil gas is the primary objective, CPGV is a better design criterion. © 2006 Wiley Periodicals, Inc.  相似文献   

2.
The mass‐to‐concentration tie‐in (MtoC Tie‐In) correlates passive soil gas (PSG) data in mass to active soil gas data in concentration determined by the US EPA Method TO‐17 or TO‐15. Passive soil gas surveys consist of rapid deployment of hydrophobic sorbents (dozens to several hundred locations typically installed in one day) to a depth of six inches to three feet in a grid pattern with exposure in the field from three days to two weeks to target a wide variety of organic compounds. A power function is used on a compound‐to‐compound basis to correlate spatially varying mass (nanograms) from selected locations within a passive soil gas survey to concentration (µg/m3) at those same locations. The correlation from selected PSG locations is applied to the remainder of the PSG grid. The MtoC Tie‐In correlations provide added value to a PSG survey, with the PSG data then used to estimate risk throughout the limits of the investigation for quantitative assessment. The results from a site in northern California show the MtoC Tie‐In correlations for both benzene and total petroleum hydrocarbons (TPH). The correlations are applied on a compound‐to‐compound basis to the remaining locations in the PSG grid to provide an estimate of concentration that can be used for comparison to risk/screening levels or fate‐and‐transport diagnostic tools (partitioning equations, solubility laws, etc.). An example of how the correlations are applied is presented in tabular form. The results from a chlorinated solvent survey show the MtoC Tie‐In correlation from a site in Maryland for tetrachloroethene (PCE). In this instance, there was a near‐perfect relationship between the PSG mass and the active soil gas concentration (R2 value of 1). The concentration estimated throughout a PSG grid enables a vast new realm of interpretive power at sites. Several other sites are discussed, including an example application for groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
In situations where groundwater supplies have been impacted by volatile organic compounds (VOCs), such as tetrachloroethene (PCE), and the source has not been identified, the costs to identify the source and plume migration patterns may be extremely high. The costs for an investigation increase with the number and depth of borings and the number of samples that are collected and analyzed. An environmental investigator and the Arizona Department of Environmental Quality (ADEQ) have successfully utilized passive soil gas (PSG) surveys in Arizona to cost‐effectively investigate VOC impacts to groundwater and identify potential sources of impact. PSG surveys are minimally intrusive, and more samples can be collected for the same cost when compared to active soil gas surveys and conventional soil and groundwater sampling programs. The result is a surficial representation of the contaminant plume and the location of “hot spots,'' which are the potential sources. This provides a better understanding of the nature and extent of the impact and allows for a focused subsurface investigation, which subsequently reduces drilling and sampling costs. © 2008 Wiley Periodicals, Inc.  相似文献   

4.
An Erratum has been published for this article in Remediation 16(1) 2005, 155–157. Water‐level data collection is a fundamental component of groundwater investigations and remediation. While the locations and depths of monitored wells are important, the frequency of data collection may have a large impact on conclusions made about site hydrogeology. Data‐logging water‐level probes may be programmed to record water levels at frequent intervals, providing site decision makers with abundant, detailed information on the response of an aquifer to both anticipated and unforeseen stresses. In this study, a network of movable probes has provided several years of hourly water‐ level data. The understanding of the site's phytoremediation system has been enhanced by the continuous data, but subsequent insights into an unexpected situation regarding the site's infrastructure have been the most valuable result of the monitoring program. © 2005 Wiley Periodicals, Inc.  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号