首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area.  相似文献   

2.
Semiarid northwestern Mexico presents a growing water demand produced by agricultural and domestic requirements during the last two decades. The community of Guadalupe Valley and the city of Ensenada rely on groundwater pumping from the local aquifer as its sole source of water supply. This dependency has resulted in an imbalance between groundwater pumpage and natural recharge. A two-dimensional groundwater flow model was applied to the Guadalupe Valley Aquifer, which was calibrated and validated for the period 1984–2005. The model analysis verified that groundwater levels in the region are subject to steep declines due to decades of intensive groundwater exploitation for agricultural and domestic purposes. The calibrated model was used to assess the effects of different water management scenarios for the period 2007–2025. If the base case (status quo) scenario continues, groundwater levels are in a continuous drawdown trend. Some wells would run dry by August 2017, and water demand may not be met without incurring in an overdraft. The optimistic scenario implies the achievement of the mean groundwater recharge and discharge. Groundwater level depletion could be stopped and restored. The sustainable scenario implies the reduction of current extraction (up to about 50 %), when groundwater level depletion could be stopped. A reduction in current extraction mitigates water stress in the aquifer but cannot solely reverse declining water tables across the region. The combination of reduced current extraction and an implemented alternative solution (such as groundwater artificial recharge), provides the most effective measure to stabilize and reverse declining groundwater levels while meeting water demands in the region.  相似文献   

3.
Demand for groundwater for drinking, agricultural, and industrial purposes has increased due to rapid increase in population. Therefore, it is imperative to assess the groundwater potential of different areas, especially in a fragile wetland ecosystem to select appropriate sites for developing well fields to minimize adverse environmental impacts of groundwater development. This study considers East Calcutta Wetlands (ECW)??a freshwater peri-urban inland wetland ecosystem located at the lower part of the deltaic alluvial plain of South Bengal Basin and east of Kolkata city. This wetland is well known over the world for its resource recovery systems developed by local people through ages, using wastewater of the city. The subsurface geology is completely blanketed by the Quaternary sediments comprising a succession of silty clay, sand of various grades, and sand mixed with occasional gravels and thin intercalations of silty clay. Groundwater occurs mostly under confined condition except in those places where the top aquitard has been obliterated due to scouring action of past channels. The groundwater in the study area is being over-extracted at the rate of 65 × 103 m3/day. Overlay analysis in Geographic Information System platform using multiple criteria such as water quality index, hydraulic conductivity, groundwater velocity, and depth to piezometric surface reveals that in and around ECW, there are five groundwater potential zones. About 74% of the aquifer of this area shows very poor to medium groundwater potential. Management options such as minimization of groundwater abstraction by introducing the treated surface water supply system and the implementation of rainwater harvesting and artificial recharge in high-rise buildings and industries are suggested for different potential zones.  相似文献   

4.
Puri City is situated on the east coast of India and receives water supply only from the groundwater sources demarcated as water fields. The objective of this paper is to assess and evaluate the groundwater quality due to impact of anthropogenic activities in the city. Groundwater samples were collected from the water fields, hand pumps, open wells, and open water bodies during post-monsoon 2006 and summer 2007. Groundwater quality was evaluated with drinking water standards as prescribed by Bureau of Indian Standards and Environmental Protection Agency to assess the suitability. The study indicated seasonal variation of water-quality parameters within the water fields and city area. Groundwater in the water fields was found to be suitable for drinking after disinfection. While in city area, groundwater quality was impacted by onsite sanitary conditions. The study revealed that groundwater quality was deteriorated due to the discharge of effluent from septic tanks, soak pits, pit latrines, discharges of domestic wastewater in leaky drains, and leachate from solid waste dumpsite. Based on observed groundwater quality, various mitigation measures were suggested to protect the water fields and further groundwater contamination in the city.  相似文献   

5.
The main objective of this paper is to examine pollution threat, especially to the groundwater resources, around Tarapur industrial area (also called the Tarapur MIDC area) located on the Arabian Sea Coast in Thane District of Maharashtra State, India and suggest remedial measures that may also be relevant to other industrial areas on the Indian Sea Coast. One hundred and thirty one samples were collected from various sources, such as dugwells, borewells, dug-cum-borewells, effluent sumps, drainage channels (effluent channels), creeks and ocean, for chemical analyses. These analyses show that the area in general is characterized by hard water and high salinity hazard, possibly due to its proximity and hydraulic connection with the sea. Although the potability of groundwater is questionable in certain pockets, it is good enough for irrigation purposes at present. Low pH value and high heavy metal contents in the adjoining Muramba creek water is a matter of great concern and may be attributed to the indiscriminate disposal of industrial effluents to the drainage channels connecting the creek. Muramba Creek is well connected with the Arabian Sea, and there are evidences of seawater intrusion around this creek. Because of the fact that Muramba Creek is highly polluted, and is hydraulically connected with the dugwells and borewells surrounding the creek, it cannot be ruled out that the groundwater around this creek is susceptible to contamination. Unless measures are not taken immediately to stop the indiscriminate disposal of the solid wastes and liquid effluents in open ground and drainage channels, and measures are not taken to maintain the appropriate pH values at the effluent treatment facilities before their disposal, the problem would indeed be formidable one day, and it will be too late then for the authorities to take care of the resulting maladies. Few suggestions have been given for controlling and managing the industrial pollution around the Tarapur MIDC area. These suggestions are relevant to other industrial areas situated on the 7,000 km long Indian Sea Coast.  相似文献   

6.
Untreated sewage and agriculture are the most important sources of contamination. The study was carried out by conducting a short-term surface water and groundwater pollution survey of the Owerri Urban area and its environs, in order to establish the current levels of pollution. An attempt has been made to show the relationships between pollution levels, population density, industrial and agricultural activities. The spatial distribution of pollutants due to a poor land use system and to human activities was investigated. This emphasises integrated planned development as a preventive measure for arresting pollution levels in fast growing urban centres. The total groundwater stored in the area amounts to 7.87 × 109 m3. Twenty five percent of this is released as base flow into the adjacent rivers (Otamiri and Nworie). The annual groundwater recharge is 3.4 × 109 m3. The enormous volume of groundwater stored and the comparatively low cost of development makes groundwater an excellent alternative supply source for the area (Uma et al., 1984).  相似文献   

7.
Groundwater recharge and available groundwater resources in Chithar River basin, Tamil Nadu, India spread over an area of 1,722 km2 have been estimated by considering various hydrological, geological, and hydrogeological parameters, such as rainfall infiltration, drainage, geomorphic units, land use, rock types, depth of weathered and fractured zones, nature of soil, water level fluctuation, saturated thickness of aquifer, and groundwater abstraction. The digital ground elevation models indicate that the regional slope of the basin is towards east. The Proterozoic (Post-Archaean) basement of the study area consists of quartzite, calc-granulite, crystalline limestone, charnockite, and biotite gneiss with or without garnet. Three major soil types were identified namely, black cotton, deep red, and red sandy soils. The rainfall intensity gradually decreases from west to east. Groundwater occurs under water table conditions in the weathered zone and fluctuates between 0 and 25 m. The water table gains maximum during January after northeast monsoon and attains low during October. Groundwater abstraction for domestic/stock and irrigational needs in Chithar River basin has been estimated as 148.84 MCM (million m3). Groundwater recharge due to monsoon rainfall infiltration has been estimated as 170.05 MCM based on the water level rise during monsoon period. It is also estimated as 173.9 MCM using rainfall infiltration factor. An amount of 53.8 MCM of water is contributed to groundwater from surface water bodies. Recharge of groundwater due to return flow from irrigation has been computed as 147.6 MCM. The static groundwater reserve in Chithar River basin is estimated as 466.66 MCM and the dynamic reserve is about 187.7 MCM. In the present scenario, the aquifer is under safe condition for extraction of groundwater for domestic and irrigation purposes. If the existing water bodies are maintained properly, the extraction rate can be increased in future about 10 % to 15 %.  相似文献   

8.
In many regions around the globe, including India, degradation in the quality of groundwater is of great concern. The objective of this investigation is to determine the effect of recharge from a check dam on quality of groundwater in a region of Krishnagiri District of Tamil Nadu State, India. For this study, water samples from 15 wells were periodically obtained and analysed for major ions and fluoride concentrations. The amount of major ions present in groundwater was compared with the drinking water guideline values of the Bureau of Indian Standards. With respect to the sodium and fluoride concentrations, 38% of groundwater samples collected was not suitable for direct use as drinking water. Suitability of water for agricultural use was determined considering the electrical conductivity, sodium adsorption ratio, sodium percentage, permeability index, Wilcox and United States Salinity Laboratory diagrams. The influence of freshwater recharge from the dam is evident as the groundwater in wells nearer to the check dam was suitable for both irrigation and domestic purposes. However, the groundwater away from the dam had a high ionic composition. This study demonstrated that in other fluoride-affected areas, the concentration can be reduced by dilution with the construction of check dams as a measure of managed aquifer recharge.  相似文献   

9.
Groundwater samples from the shallow unconfined aquifer were collected from fifteen borewells in Kalpakkam nuclear plant site and were analysed for various physico-chemical parameters. The pH, temperature, salinity, TDS and EC were measured in the field. The borewell samples were analysed in the laboratory for Ca(2+), Mg(2+), Na(+), Cl(-), [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text]. The Piper Trilinear diagram showed that majority of the borewell samples fall in Na - Cl +SO(4) type and Na - CO(3)+HCO(3) type. The Cl: HCO3 ratio of some borewell samples are categorized under injuriously contaminated to highly injurious type. The higher salinity levels encountered in some borewells emphasized the need for better understanding of groundwater corrosiveness. Accordingly, the Langeliar saturation Index (SI), Aggressivity index (AI) and Larson ratio (LnR) were evaluated for assessing the corrosive nature of the groundwater. The saline water incursion in the southern part of the study area increased the ionic concentration of Cl(-) and [Formula: see text] that made the groundwater corrosive.  相似文献   

10.
Groundwater resource forms a significant component of the urban water supply. Declining groundwater levels in Bangalore Urban District is generally due to continuous overexploitation during the last two decades or more. There is a tremendous increase in demand in the city for good quality groundwater resource. The present study monitors the groundwater quality using geographic information system (GIS) techniques for a part of Bangalore metropolis. Thematic maps for the study area are prepared by visual interpretation of SOI toposheets on 1:50,000 scale using MapInfo software. Physicochemical analysis data of the groundwater samples collected at predetermined locations form the attribute database for the study, based on which spatial distribution maps of major water quality parameters are prepared using MapInfo GIS software. Water quality index was then calculated by considering the following water quality parameters--pH, total dissolved solids, total hardness, calcium hardness, magnesium hardness, alkalinity, chloride, nitrate and sulphate to find the suitability of water for drinking purpose. The water quality index for these samples ranged from 49 to 502. The high value of water quality index reveals that most of the study area is highly contaminated due to excessive concentration of one or more water quality parameters and that the groundwater needs pretreatment before consumption.  相似文献   

11.
As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ18O, δ2H and 3H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization.  相似文献   

12.
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO3). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.  相似文献   

13.
以豫东平原惠北试验区为研究区域,根据研究区域包气带土壤蓄水库容、土壤前期含水量、地表径流、潜水蒸发量等资料数据计算地下水入渗补给规律,确定降雨对地下水的补给系数.研究结果显示:单次短时强降雨条件下,降雨强度与研究区域浅层地下水入渗补给系数呈反比例关系;当降雨强度一致时降雨量与研究区域浅层地下水入渗补给系数呈正比例关系,在降雨强度低于15 mm/h的条件下,降雨量主要用于补充包气带缺失的水分和土壤、作物、植物等的蒸发蒸腾消耗,无法对研究区域浅层地下水进行有效补给.  相似文献   

14.
The main objective of this study was to statistically evaluate the significance of seasonal groundwater quality change and to provide an assessment on the spatial distribution of specific groundwater quality parameters. The studied area was the Mount Nif karstic aquifer system located in the southeast of the city of Izmir. Groundwater samples were collected at 57 sampling points in the rainy winter and dry summer seasons. Groundwater quality indicators of interest were electrical conductivity (EC), nitrate, chloride, sulfate, sodium, some heavy metals, and arsenic. Maps showing the spatial distributions and temporal changes of these parameters were created to further interpret spatial patterns and seasonal changes in groundwater quality. Furthermore, statistical tests were conducted to confirm whether the seasonal changes for each quality parameter were statistically significant. It was evident from the statistical tests that the seasonal changes in most groundwater quality parameters were statistically not significant. However, the increase in EC values and aluminum concentrations from winter to summer was found to be significant. Furthermore, a negative correlation between sampling elevation and groundwater quality was found. It was shown that with simple statistical testing, important conclusions can be drawn from limited monitoring data. It was concluded that less groundwater recharge in the dry period of the year does not always imply higher concentrations for all groundwater quality parameters because water circulation times, lithology, quality and extent of recharge, and land use patterns also play an important role on the alteration of groundwater quality.  相似文献   

15.
16.
A survey conducted in water wells located in the rhyolithic volcanic area of Mandamados, Lesvos Island, Greece, indicated that significant seasonal variation of arsenic concentration in groundwater exists mainly in wells near the coastal zone. However, there were differences among those coastal wells with regard to the processes and factors responsible for the observed seasonal variability of the element, although they are all located in a small homogeneous area. These processes and factors include (a) a higher rate of silicate weathering and ion exchange during the dry period followed by the dilution by the recharge water during the wet period, (b) enhanced desorption promoted by higher pH in summer and subsequent dilution of As by rainwater infiltration during the wet period, and (c) reductive dissolution of Mn during the wet period and by desorption under high pH values during the dry period. On the other hand, in wells located in higher-relief regions, the concentration of As in groundwater followed a fairly constant pattern throughout the year, which is probably related to the faster flow of groundwater in this part of the area due to a higher hydraulic gradient. In general, seasonal variation of As in groundwater in the study area was found to be related to geology, recharge rate, topography—distance from coast, and well depth.  相似文献   

17.
Over 40 years, the detrital aquifer of the Plana de Castellón (Spanish Mediterranean coast) has been subjected to seawater intrusion because of long dry periods combined with intensive groundwater exploitation. Against this backdrop, a managed artificial recharge (MAR) scheme was implemented to improve the groundwater quality. The large difference between the electrical conductivity (EC) of the ambient groundwater (brackish water due to marine intrusion) and the recharge water (freshwater) meant that there was a strong contrast between the resistivities of the brackish water saturated zone and the freshwater saturated zone. Electrical resistivity tomography (ERT) can be used for surveying similar settings to evaluate the effectiveness of artificial recharge schemes. By integrating geophysical data with lithological information, EC logs from boreholes, and hydrochemical data, we can interpret electrical resistivity (ER) with groundwater EC values and so identify freshwater saturated zones. Using this approach, ERT images provided a high-resolution spatial characterization and an accurate picture of the shape and extent of the recharge plume of the MAR site. After 5 months of injection, a freshwater plume with an EC of 400–600 μS/cm had formed that extended 400 m in the W-E direction, 250 m in the N-S direction, and to a depth of 40 m below piezometric level. This study also provides correlations between ER values with different lithologies and groundwater EC values that can be used to support other studies.  相似文献   

18.
A 12-month study was carried to assess the seasonal and tidal effects on the physical parameters of river and groundwater, which constitute the major potable water sources in Calabar (Nigeria). The study also included an evaluation of the chemical composition of the different water bodies and their relationship. The results show that there was a significant seasonal effect on dissolved oxygen (DO) and nitrate in groundwater on one hand, and on temperature, redox potential (Eh), and DO in river water on the other. Also, a significant tidal influence exists on DO in both river-and groundwater. Comparison between groundwater and river water show statistically significant difference in EC, TDS, Eh, DO, Na, Cl and NO(3). The significant differences in EC, TDS, Na and Cl are due to tidal flushing. The difference in Eh is due to geology of the area while, NO(3) is as a result of anthropogenic pollution. The concentrations of ions in the river and groundwater for the different seasons and tidal cycles show an inverse relationship, while the river water is generally more concentrated than the groundwater. Using a binary mixing model, estimates show that the degree of mixing of river water and groundwater is low, with values of between 1.93% and 2.76% respectively, in the western and eastern parts of the study area. The study concludes that tidal flushing, anthropogenic effects and oxygen supply during recharge contribute to the shaping of water chemistry in the area.  相似文献   

19.
Water availability in arid regions is both sporadic and highly variable in quantity. If the water quality shows large variations of salinity and concentration of other chemical constituents with depth and time span, it has considerable effect on the entire hydrological set up of the area. In the Saidabad tahsil area, the deep aquifers that supply water to borewells in the alluvial plain of the Mathura region, Uttar Pradesh, have higher salinity than those of the dugwells from the shallow aquifers. The excessive drilling of tubewells and high yield tubewells are resulting in deterioration of water quality of the shallow aquifers. On the contrary, the chemical constituents such as, Na+, K +, Cl -, andHCO 3 - show higher concentration in shallow aquifers than deep aquifers. A study carried out to monitor water quality in this region reveals that the groundwater quality varies with depth and time span in shallow and deep aquifers. Factors controlling variations in salinity and concentration of chemical constituents of the water in the two types of aquifers are discussed. The relative merits of the shallow water for potability are pointed out with respect to salinity concentrations and public health.  相似文献   

20.
The aim of this study was to investigate the response of groundwater level and well yields in the Halacli aquifer to climate variations in Central Anatolia, Turkey. The Halacli aquifer is a typical aquifer due to its vulnerability to the climate variations. The aquifer is shallow and its recharge area is small. The waters from rains and snow melts can rapidly infiltrate down to the groundwater body because the vadose zone is thin and formed from coarse material. Therefore, the groundwater system responds to the short-term recharges by raising its level. Although any exploitation did not occur, the groundwater levels have declined from 1989 to 1997. However, the groundwater levels began rising when the exploitation started in the summer of 1998. After the year 2000, although the amount and duration of yearly exploitation was constant, fluctuations of water level continued. Fluctuation of groundwater levels and well yields bewilders the water users and imperils the sustainable water management in the study area and also in arid and semi-arid regions of Turkey. In order to overcome this problem, behavior of groundwater level and discharges of the wells must be recorded and the water users must be informed about the current conditions and the possible trend in the future of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号