首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同处理条件对石油污染土壤植物修复的影响   总被引:4,自引:0,他引:4  
针对石油烃植物修复过程中的主要影响因素,研究了不同植物种类、不同土壤调理剂和菌剂使用等不同条件对土壤中石油烃植物修复效果的影响.结果表明,不同种类的植物修复可使总石油烃的年降解率达到37.8% ~ 73.98%,其中大豆和碱蓬具有较好的修复效果;3种不同土壤调理剂对石油烃污染土壤修复的效果为商业添加剂>牛粪>蛭石;先微生物修复后种植植物的处理要优于单独的微生物修复及微生物、植物修复同步进行的处理.  相似文献   

2.
This paper presents the development of a hybrid bi-level programming approach for supporting multi-stage groundwater remediation design. To investigate remediation performances, a subsurface model was employed to simulate contaminant transport. A mixed-integer nonlinear optimization model was formulated in order to evaluate different remediation strategies. Multivariate relationships based on a filtered stepwise clustering analysis were developed to facilitate the incorporation of a simulation model within a nonlinear optimization framework. By using the developed statistical relationships, predictions needed for calculating the objective function value can be quickly obtained during the search process. The main advantage of the developed approach is that the remediation strategy can be adjusted from stage to stage, which makes the optimization more realistic. The proposed approach was examined through its application to a real-world aquifer remediation case in western Canada. The optimization results based on this application can help the decision makers to comprehensively evaluate remediation performance.  相似文献   

3.
就SEAR技术修复土壤及地下水中NAPL污染的原理及发展现状进行了综述.SEAR技术可以快速有效地去除土壤和地下水中的NAPL污染源,适于多种污染物.该技术通过增溶和增流2种途径提高NAPL污染物的去除率.表面活性剂的选择和微乳液体系的调配是SEAR技术实施的关键环节.将SEAR技术用于高浓度NAPL污染源的治理,并与生物修复和自然降解相结合,是经济高效的治理方案.  相似文献   

4.
ABSTRACT

We investigate the application of two classes of artificial neural networks for the identification and control of discrete-time nonlinear dynamical systems. A fully connected recurrent network is used for process identification, and a multilayer feedforward network is used for process control. The two neural networks are arranged in series for closed-loop control of oxides of nitrogen (NOx) emissions of a simplified representation of a dynamical system. Plant data from one of Commonwealth Edison's coal-fired power plants are used for testing the approach, with initial results indicating that the method is feasible. However, further work is required to determine whether the method remains feasible as the number of state variables and control variables are increased.  相似文献   

5.
Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties.  相似文献   

6.
阿特拉津土壤污染修复菌剂载体材料的筛选与应用   总被引:1,自引:0,他引:1  
阿特拉津是长残留除草剂,其环境行为和生物修复技术已成为有机污染控制领域的研究热点。以廉价的高岭土、凹凸棒土和腐殖酸为载体材料,采用正交实验,把功能菌存活率作为目标性状,参考材料成球率,筛选出性能较好的高岭土、凹凸棒土和腐殖酸质量配比3种,分别为1∶0.5∶0.5(A3B2C1)、0.5∶0∶0.5(A2B3C1)和1∶0∶1(A3B1C2);在温度和紫外线耐受力实验中,A3B2C1材料配比更能够有效提升功能菌在高温和紫外线作用下的存活率,即载体中高岭土、凹凸棒土和腐殖酸质量比为1∶0.5∶0.5时效果最佳;利用A3B2C1载体材料配比制备菌剂,进行室内土壤修复实验,35 d时0.1%和0.5%载体菌剂添加量修复土壤中阿特拉津完全降解,而2个游离菌修复土壤中残留率均16%,0.1%载体菌剂添加量修复过程中土壤微生物Shannon多样性指数和均匀度变化幅度较其他修复方式小,有利于土壤微生物生态系统的平衡,因此0.1%载体菌剂添加量修复效果为最优。  相似文献   

7.
Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development. This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site. These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.  相似文献   

8.
Bioremediation, the process by which hazardous substances are degraded by microorganisms, is at the forefront of a larger group of innovative remediation technologies being applied at hazardous waste sites worldwide. Although the process of bioremediation has been utilized for decades in the field of wastewater engineering, its application to soils and groundwater at hazardous waste sites is fairly new and still undergoing intensive development.

This article is intended to provide both an overview of the state of practice of bioremediation in hazardous waste remediation operations, and an inventory of issues to consider when evaluating the use of this technology for a contaminated site.

These topics will be the subject matter of a unique Bioremediation Satellite seminar to be broadcast on January 9, 1992. The seminar, a joint venture between the Air and Waste Management Association (A&WMA) and the Hazardous Waste Action Coalition (HWAC), is the first in a series of satellite seminars that will deal with innovative hazardous waste remediation technologies. The intent of these seminars is to design programs which will make hazardous waste practitioners more familiar with innovative remediation technologies so that they will consider using the technologies in future clean-up operations.  相似文献   

9.
Luo Q  Wang H  Zhang X  Fan X  Qian Y 《Chemosphere》2006,64(3):415-422
In situ bioremediation is a safe and cost-effective technology for the cleanup of contaminated sites, but its remediation rate is usually very slow. This study attempted to accelerate the process of bioremediation by employing non-uniform electrokinetic transport processes to mix organic pollutants and degrading bacteria in soils under in situ conditions (namely, in situ bioelectrokinetic remediation) by use of an electrode matrix and a rotational operation mode. A bench-scale non-uniform electrokinetic system with periodic polarity-reversal was developed for this purpose, and tested by using a sandy loam spiked with phenol as a model organic pollutant. The results demonstrated that non-uniform electrokinetic processes could enhance the in situ biodegradation of phenol in the soil, the efficiency of which depended upon the operational mode of the electric field. Compared with the unidirectional operation and the bidirectional operation, the rotational operation could effectively stimulate the biodegradation of phenol in the soil if adopting appropriate time intervals of polarity-reversal and electrode matrixes. A reversal interval of 3.0 h and a square-shaped electrode matrix with four electrode couples appeared appropriate for the in situ biodegradation of phenol, at which a maximum phenol removal of 58% was achieved in 10d and the bioremediation rate was increased about five times as compared to that with no electric field applied. The results also showed that adopting a small polarity-reversal interval and an appropriate electrode array could produce a high and uniform removal of phenol from the soil. It is believed that in situ bioelectrokinetic remediation holds the potential for field application.  相似文献   

10.
Wang S  Mulligan CN 《Chemosphere》2004,57(9):1079-1089
Soil contamination is notoriously difficult to treat because the contaminants are often tightly bound to the soil particles. Conventional remediation technologies are becoming less popular due to the high treatment costs. This paper gives a comprehensive overview and evaluation of an emerging promising alternative, surfactant foam technology. Different from other approaches, surfactant foam technology may be designed either to remove contaminants or/and simultaneously act as an augmentation for the existing technologies such as pump-and-treat systems and bioremediation processes to improve the contaminant removal efficiency and cost effectiveness. Encouraging results were achieved from laboratory and field demonstrations. However, as an innovative technology, there are many factors to be investigated with the future development. Special attention is paid to the selection of the most appropriate foaming surfactant and surfactant concentration, which are critical to the success of the implementation of the remediation process and have significant effects on the treatment costs. Moreover, development of predictive mathematical models in for future research is helpful to optimize the remediation process.  相似文献   

11.
污染土壤淋洗技术是修复污染土壤的一种新方法 ,是对污染土壤生物修复的一种补充 ,使污染土壤修复的系统化成为可能。淋洗法主要使用淋洗剂清洗土壤 ,使土壤中污染物随淋洗剂流出 ,然后对淋洗剂及土壤进行后续处理 ,从而达到修复污染土壤的目的。因为淋洗剂的种类和淋洗方式的不同 ,土壤淋洗法可分为许多种类。土壤淋洗法主要受土壤条件、污染物类型、淋洗剂的种类和运行方式等因素影响。综合考虑多方面因素 ,就有潜力设计出经济高效的土壤淋洗系统。土壤淋洗法有很多优点 ,尽管也存在一些问题 ,但其技术上的优势也是其他方法难以取代的 ,所以有良好的应用前景。  相似文献   

12.
利用电动技术强化有机污染土壤原位修复研究   总被引:3,自引:1,他引:3  
电动修复技术是近几年发展起来的一种新型土壤修复技术,由于其处理的高效性受到了越来越多的关注。本文介绍了利用电动技术强化土壤有机污染物原位修复的原理及其最新进展。电动强化有机物污染修复的基本原理是利用电动效应对有机物的迁移作用或者强化生物修复过程(注入营养物、电子受体和活性微生物等)达到去除污染物的目的。研究表明,该技术不破坏生态环境,安装操作简单成本低廉,具有广泛的应用前景,其中电动强化原位生物修复和能够适应于各种不同成分污染(如有机物重金属复合污染)的多技术联合是今后电动技术发展的重要方向。  相似文献   

13.
In situ sequenced bioremediation of mixed contaminants in groundwater   总被引:3,自引:0,他引:3  
A mixture of chlorinated solvents (about 0.5-10 mg/l), including tetrachloroethene (PCE) and carbon tetrachloride (CT), together with a petroleum hydrocarbon, toluene (TOL), were introduced into a 24 m long x 2 m wide x 3 m deep isolated section (henceforth called a gate) of the Borden aquifer and subjected to sequential in situ treatment. An identical section of aquifer was similarly contaminated and allowed to self-remediate by natural attenuation, thus serving as a control. The control presents a rare opportunity to critically assess the performance of the treatment systems, and represents the first such study for sequenced in situ remediation. The first treatment step was anaerobic bioremediation. This was accomplished using a modified nutrient injection wall (NIW) to pulse benzoate and a nutrient solution into the aquifer, maximizing mixing by dispersion and minimizing fouling near the injection wells. In the anaerobic bioactive zone that developed, PCE, CT and chloroform (CF), a degradation product of CT, degraded with a half-lives of about 59, 5.9 and 1.7 days, respectively. The second step was aerobic bioremediation, using a biosparge system. TOL and cis-1,2 dichloroethene (cDCE), from PCE degradation, were found to degrade aerobically with half-lives of 17 and 15 days, respectively. Compared to natural attenuation, PCE and TOL removal rates were significantly better in the sequenced treatment gate. However, CT and CF were similarly and completely attenuated in both gates. It is believed that the presence of TOL helped sustain the reducing environment needed for the reduction of these two compounds.  相似文献   

14.
There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions.  相似文献   

15.
The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach. Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.  相似文献   

16.
Lee ES  Schwartz FW 《Chemosphere》2007,69(2):247-253
A well-based reactive barrier system using controlled-release KMnO4 has been recently developed as a long-term in situ treatment option for plumes of dense and non-aqueous phase liquids in groundwater. In order to take advantage of the merits of controlled release systems (CRS) in environmental remediation, the release behavior needs to be optimized for the hydrologic and environmental conditions of target treatment zone. Where release systems are expected to be operated over long times, like for the reactive barriers, it may only be practical to describe the long-term behavior numerically. We developed a numerical model capable of describing release characteristics associated with variable forms and structures of long-term CRS. Sensitivity analyses and illustrative simulations showed that the release kinetics and durations would be constrained by changes in agent solubility, bulk diffusion coefficients, or structures of the release devices. The generality of the numerical model was demonstrated through simulations for CRS with monolithic and double-layered matrices. The generalized model was then used for actual design and analyses of an encapsulated-matrix CRS, which can yield constant release kinetics for several years. A well-based reactive barrier system (4.05 x 10(3)m3) using the encapsulated-matrix CRS can release approximately 1.65 kg of active agent (here MnO4(-)) daily over the next 6.6 yr, creating prolonged reaction zone in the subsurface. The generalized model-based, target-specific approach using the long-term CRS could provide practical tool for improving the efficacy of advanced in situ remediation schemes such as in situ chemical oxidation, bioremediation, or in situ redox manipulation. Development of techniques for adjusting the bulk diffusion coefficients of the release matrices and facilitating the lateral spreading of the released agent is warranted.  相似文献   

17.

Hypersaline environments are underappreciated and are frequently exposed to pollution from petroleum hydrocarbons. Unlike other environs, the high salinity conditions present are a deterrent to various remediation techniques. There is also production of hypersaline waters from oil-polluted ecosystems which contain toxic hydrophobic pollutants that are threat to public health, environmental protection, and sustainability. Currently, innovative advances are being proposed for the remediation of oil-contaminated hypersaline regions. Such advancements include the exploration and stimulation of native microbial communities capable of utilizing and degrading petroleum hydrocarbons. However, prevailing salinity in these environments is unfavourable for the growth of non-halophylic microorganisms, thus limiting effective bioremediation options. An in-depth understanding of the potentials of various remediation technologies of hydrocarbon-polluted hypersaline environments is lacking. Thus, we present an overview of petroleum hydrocarbon pollution in hypersaline ecosystems and discuss the challenges and prospects associated with several technologies that may be employed in remediation of hydrocarbon pollution in the presence of delimiting high salinities. The application of biological remediation technologies including the utilization of halophilic and halotolerant microorganisms is also discussed.

  相似文献   

18.
Bioremediation process on Brazil shoreline   总被引:1,自引:0,他引:1  
GOAL, SCOPE AND BACKGROUND: Bioremediation technique can be considered a promising alternative to clean oil spills using microbial processes to reduce the concentration and/or the toxicity of pollutants. To understand the importance of this work we must know that there is only little research performed to date using bioremediation techniques to clean oil spills in tropical countries. So, the main objective of this work is to analyze the behavior of a laboratory's bioremediation test using nutrients on coastal sediments. METHODS: The bioremediation process is followed through geochemical analysis during the tests. This organic material is analyzed by medium pressure liquid chromatography (MPLC), gas chromatography/flame ionization detection (GC/FID) and gas chromatography/ mass spectrometry. By microbial counting, the number of total bacteria and degrading bacteria is determined during the experiments, in order to confirm the effectiveness of the bioremediation process. The seawater obtained throughout the bioremediation process is analyzed for nutrients grade (phosphate and ammonium ions) and also for its toxicity (Microtox tests) due the presence of hydrocarbons and fertilizer. RESULTS: The results from the geochemical analyses of the oil show a relative decrease in the saturated hydrocarbon fraction that is compensated by a relative enrichment on polar compounds. It's confirmed by the fingerprint evaluation where it is possible to see a complete reduction of the normal alkanes followed by isoprenoids. Seawater analysis done by toxicity and nutrients analysis, such as microbial counting (total and degrading bacteria), confirm the fertilizer effectiveness during the bioremediation process. DISCUSSION: Results from simulating test using NPK, a low-price plant fertilizer, suggest that it's able to stimulate the degradation process. Results from medium pressure liquid chromatography (MPLC), done at two different depths (surface and subsurface), show different behavior during the biodegradation process where the later is seen to be more susceptible to microbial attack. Data from bioremediation unit shows a bigger reduction of the saturated fraction, followed by some smaller reduction of aromatic fractions, compensated by a relative increase from polar compounds (NSO). n-C17/pristane, n-C18/ fitane and pristane/fitane rates show constant values for the unity control, different from bioremediation samples which have a significant reduction, especially on subsurface areas, where a strong fall in the rates, seen to be reduced to zero over twenty days, had occurred during the first ten days. However, sample surfaces are reduced to zero in thirty days of experiments, proving that biodegradation is better on subsurfaces. Gaseous chromatography/mass spectrometry (CG/MS) analysis shows constant values to cyclic biomarker rates and aromatic compounds, suggesting that the biodegradation process is not strong enough to reduce these composites. Microbial analysis shows a reduction on heterotrophic (total bacteria) number from control unit, probably because the bacteria uses the spill oil like carbon source and energy. However, the number increases on bioremediation unit, because it uses NPK like a biostimulator. The hydrocarbonoclastic number isn't enough on the first moment, but it's detected after 30 days and quantified in all units, showing big values especially in bioremediation. Toxicity tests confirm that NPK fertilizer does not intoxicate the shoreline during the application of the bioremediation technique. Some nutrient concentration shows high values of ammonium and phosphate per bioremediation unit, reducing by the end of the experiment. CONCLUSIONS: Results reached the goal, finding a proper nutrient (NPK fertilizer) to stimulate the biodegradation process, growing bacteria responsible for reducing impact-contaminated coast ambient by oil spills. Chemical analysis of oil shows a reduction in the saturated fraction with a relative enrichment in polar composites (NSO) and the aromatic fraction from oil remaining constant. Subsurface samples show more biodegradation than surface samples, probably because the first one has higher humidity. Linear alcanes are more biodegraded than isoprenoids, confirming the biodegradation susceptibility order. Saturated cyclic biomarkers and aromatic compounds show constant behavior maybe because the nutrients or time was not enough for microorganismic attack. Fertilizer does not demonstrate any toxic effects in local biota so that it does not compromise the technique applicability and the environment is not saturated by nutrients during the simulation, especially since the coastal environment is an open system affected daily by tides. Therefore, bioremediation tests can be classified as moderate, reaching level 5 in the classification scale by Peters & Moldowan (1993). RECOMMENDATIONS AND PERSPECTIVES: The use of marine environment by the petroleum industry on exploration, production and transportation operation, transform this oil to become the most important pollutant in the oceans. Bioremediation is an important technique used to clean spilled oil impacting on shorelines, accelerating the biodegradation process by using fertilizer growing the microorganisms responsible for decontaminating the environment. We recommend confirming the efficiency of NPK nutrient used on bioremediation simulating experiments on beaches, while monitoring the chemical changes long-term. NPK fertilizer can be used to stimulate the biodegradation process on shoreline impacted by spilled oil.  相似文献   

19.
Phytoremediation has the potential to enhance clean up of land contaminated by various pollutants. A mathematical model that includes a two-fluid phase flow model of water flow as well as a two-region soil model of contaminant reactions was developed and applied to various bioremediation scenarios in the unsaturated zone, especially to plant-aided bioremediation. To investigate model behavior and determine the main parameters and mechanisms that affect bioremediation in unplanted and planted soils, numerical simulations of theoretical scenarios were conducted before applying the model to field data. It is observed from the results that parameters affecting the contaminant concentration in the water phase, such as aqueous solubility, the octanol-water partition coefficient, and organic carbon content of the soil controlled the contaminant fate in the vadose zone. Simulation using the developed model also characterized the fate and transport of the contaminants both in planted and unplanted soils satisfactorily for field applications. Although phytoremediation has the potential for remediation of contaminated soils, results from both modeling and field studies suggested that plants may not always enhance the remediation efficiency when the soil already has a high microbial concentration, when the contaminant bioavailability is low, or when the overall reaction is mass transfer-limited. Therefore, other steps to increase contaminant bioavailability are needed in phytoremediation applications; natural purification mechanisms such as aging, volatilization, and natural bioremediation should be considered to maximize the plant effect and minimize the cost.  相似文献   

20.
V Achal  X Pan  D Zhang 《Chemosphere》2012,89(6):764-768
Contamination of aquifers or sediments by radioactive strontium (90Sr) is a significant environmental problem. In the present study, microbially induced calcite precipitation (MICP) was evaluated for its potential to remediate strontium from aquifer quartz sand. A Sr resistant urease producing Halomonas sp. was characterized for its potential role in bioremediation. The bacterial strain removed 80% of Sr from soluble-exchangeable fraction of aquifer quartz sand. X-ray diffraction detected calcite, vaterite and aragonite along with calcite-strontianite (SrCO3) solid solution in bioremediated sample with indications that Sr was incorporated into the calcite. Scanning electron micrography coupled with energy-dispersive X-ray further confirmed MICP process in remediation. The study showed that MICP sequesters soluble strontium as biominerals and could play an important role in strontium bioremediation from both ecological and greener point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号