首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三峡库区生活垃圾的重金属污染程度评价   总被引:14,自引:3,他引:14  
长期以来,我国的城市生活垃圾处理与处置主要以填埋为主,且大部分为简易填埋或堆放,形成众多的垃圾堆放场。它们不仅影响周围的生态环境,而且威胁到居民的身体健康,特别是不少堆存的生活垃圾受到重金属元素不同程度的污染,任意放置可能会产生严重的后果,所以评价生活垃圾的重金属元素污染程度有助于垃圾堆放场的环境影响评价以及污染防治措施的提出。以三峡库区为例,通过测定三峡库区各个区县主要垃圾堆放场堆存生活垃圾的重金属元素含量, 包括砷、铅、铬、镉和汞,采用单因子评价和综合评价法确定三峡库区堆存生活垃圾的重金属污染程度,为库区的环境保护提供决策支持。  相似文献   

2.
通过采集、测定升金湖沉积岩芯重金属含量,基于岩芯AMS14C年代—深度模型,分析了升金湖1000 A.D.以来的重金属污染历史特征和可能来源,采用潜在生态风险指数法与富集系数法评价了升金湖流域不同历史时期生态风险。研究结果表明,元素As、Mn、Pb、Cu、Zn、Cr、V和Ni的平均含量分别为19.2、623.7、28.6、42.4、115.7、83.7、153.1和46.5 mg·kg-1。随时间推移,升金湖沉积物中重金属综合潜在生态风险(RI)逐渐上升;1600 A.D.前元素As的潜在生态风险属于轻微生态危害,1900 A.D.后上升为中等生态危害,元素Cu、Mn、Ni、Pb、Zn、V和Cr均为轻微生态危害;各元素潜在生态危害由大到小排序为As>Cu>Ni>V>Pb>Cr>Mn>Zn, As、Cu为主要贡献因子。1600 A.D.前元素As为轻度富集,人为污染小,1600 A.D.后呈中等偏强富集,人为来源占比显著增加;1600 A.D.前元素Cu波动变化,1600 A.D.后呈中等富集,人为来源...  相似文献   

3.
通过对昆山市14个区镇91个土壤样品中As、Cd、Cr、Cu、Pb、Ni、Hg、Zn 8种重金属测定分析,对该市耕地土壤重金属污染进行评价并进行重金属污染的影响因素分析。结果表明,昆山市耕地土壤存在不同程度的轻微污染,重金属Cd、Cr、Cu、Pb、Hg、Zn均超过国家土壤背景值,旱地、水田中均以Hg污染范围较广、变异系数较大。综合污染指数表现为水田(115)>旱地(100)。区镇耕地重金属污染评价表明千灯、陆扬、石浦、锦溪、石牌处于警戒值之内,蓬朗、周庄、张浦、正仪、周市、巴城、淀山湖、花桥、陆家轻度污染;昆山市耕地土壤中重金属元素均未超过土壤环境基本容量,能够保证作物品质和农业持续发展。同时,研究表明区域重金属轻微污染具有复合污染的特性,Cd、Pb相关性最高(〖WTBX〗P〖WTBZ〗=0621 0), Pb与Hg、Cu、Zn、Cu与Cr也有相关性(0438 7、0426 0、0350 9、0394 0),区域重金属的轻微污染受人为因素影响显著,研究指出应加强对区域优先控制污染物Hg、次优先控制污染物Pb、Cd、Zn、Cu、Cr的控制与治理。  相似文献   

4.
三峡库区中低产土壤重金属含量及其与小麦吸收的关系   总被引:3,自引:0,他引:3  
三峡库区中低产土壤的Hg,As,Cr,Pb,Cu五个重金属含量(除渝北区外),均在国家土壤环境质量标准内,属自然背景值一级标准。Cd和Zn高于全国土壤中的平均含量和背景值含量,属二级标准。土壤的重金属含量与土壤母质类型,pH值,阳离子交换量,有机质,无定形铁和物理性粘粒有关,同时存在一定的地域分布。重庆近郊的土壤所有重金属含量相对较高。土壤重金属的可给态或有效性含量极低,锌和铜不是过量,而是不足。小麦籽粒中As,Cr,Pb,Zn,Cu含量低于国家食品对重金属限量标准和小麦籽粒背景值标准,Hg,Cd含量高于国家规定标准。籽粒中的Cu,Zn含量是小麦茎叶中的2.0-2.2倍,而茎叶中的Hg,Pb,As,Cr,Cd含量明显高于籽粒。  相似文献   

5.
根据南淝河丰水期和枯水期水质的调查数据,采用单因子水质指数法和改进后的模糊综合评价法对水中重金属元素的污染进行了评价,确定了主要污染因子和优先控制断面,并利用主成分分析法对重金属污染进行了溯源分析。结果表明:Cr、Cu、Pb的含量平均值均为枯水期高于丰水期,而As、Cd的含量平均值均为枯水期低于丰水期。单因子水质指数法评价结果显示南淝河重金属污染的主要污染因子是Cd,丰水期和枯水期各采样点Cd的含量均达到地表水Ⅴ类水标准,最高值达到地表水Ⅴ类标准值的2.6倍。改进后模糊综合评价法评价结果显示南淝河水质丰水期基本属于地表水环境质量标准Ⅱ类水标准,潜山北路大桥断面污染最严重,属于优先控制断面,枯水期各断面水质均属于Ⅲ类水标准,整体上南淝河水质达到了水体功能区目标。主成分分析法结果显示,南淝河重金属污染的主要来源是流域内的农药化肥、机械制造和电镀行业的废水以及河道的行船。  相似文献   

6.
本文从城市土壤中重金属元素的污染来源、污染危害、污染空间特征、污染评价方法和治理方法等方面来对我国城市土壤重金属污染问题的研究进展进行综述,并提出了相关的治理对策建议。  相似文献   

7.
基于ANN的土壤重金属分布和污染评价研究   总被引:1,自引:0,他引:1  
农田土壤重金属污染与备受关注的农产品安全问题有密切联系,因此对其进行研究意义重大。以江苏省南通市为研究区,利用采样点实测数据,借助神经网络模型(ANN)并结合3S技术对问题进行研究,从而对土壤重金属的空间动态分布进行描述,并对各个空间位点重金属的污染状况进行评价。结果表明,神经网络模型能够智能地学习各个样点的空间位置与该点各重金属含量之间的映射关系和预先设计好的分类评价模式,并能够稳健地对各个空间插值点处的重金属含量和各个位点的重金属污染状况进行预测和评价。结论显示,南通市大部分农田土壤重金属污染较轻,但也存在局部地区的严重污染。结论与实际情况相符,表明神经网络模型可以为农田土壤重金属的研究提供一个新的思路和方法。  相似文献   

8.
农药企业场地土壤重金属污染状况及风险评价   总被引:3,自引:0,他引:3  
为了解典型农药化工厂区及周边土壤的重金属含量分布及其环境风险,本研究选择京津渤地区某农药企业,对其厂区和周边表层土壤中Cu、Ni、Cd、Zn、Cr、Pb、Hg和As等重金属进行了监测,并采用内梅罗综合指数法、Hakanson潜在生态风险指数法和美国环保署(USEPA)的人体暴露风险评价方法进行了生态风险和健康风险评价。结果表明,企业内部存在明显的As污染,尤其是生产区土壤中As的浓度达到土壤三级标准的2.59倍,企业周边土壤也存在普遍的Cd、Pb和Hg累积现象,历史生产过程含砷辅料的使用是造成厂区As污染的关键原因。从潜在生态风险指数来看,企业内部生活区及周边土壤重金属平均总潜在生态风险水平为低度;生产区土壤的重金属总潜在生态风险水平为重度。所有重金属各种途径的非致癌风险叠加均未超过1,非致癌风险在安全范围内,其中主要的非致癌风险贡献元素为Cr、As和Pb。四种致癌重金属Ni、Cd、Cr和As的致癌风险指数从大到小排序为As>Cr>Ni>Cd,Cr、Cd和Ni在企业厂内以及周边土壤中的健康风险值均小于10-6,致癌风险较低,不会对人体造成致癌危害;As在厂内生活区以及厂外周边土壤的致癌风险水平在10-6-10-4之间,存在一定程度的致癌危害;然而,厂内生产区土壤中As的致癌风险值为1.2×10-4,有显著致癌风险。  相似文献   

9.
本文搜集2005~2016年最新发表的关于山东省土壤重金属污染的科研论文,分析不同区域8种重金属的含量分布及来源,综合评估其可能存在的生态风险。研究表明聊城和黄河口区域重金属浓度最高,而滨州、德州、小清河流域等区域重金属浓度相对较低,且来源解析表明其主要来自于交通运输、金属冶炼和化石燃料燃烧。各重金属中,Hg、Cd的生态危害系数最高,属于中等或较强污染程度,但生态风险总体上处于较低轻度水平。  相似文献   

10.
三峡库区香溪河库湾沉积物重金属污染特征   总被引:7,自引:0,他引:7  
2010年3月在三峡水库香溪河库湾获取了无扰动沉积物柱状样,在香溪河口的长江干流(长江右岸)获取了表层沉积物样,现场进行了环境因子测量和室内粒度分析、矿物分析、重金属元素含量分析。沉积物矿物以绿泥石、伊利石和石英为主,占到全部矿物的65%左右。柱状沉积物pH值随深度增加呈现变小的趋势,Eh值也有随深度减少的趋势,反映了环境还原性加强。R-型因子分析结果表明:重金属元素的含量随粒径变细、绿泥石和伊利石含量增加而增加,而随石英、白云石含量增加而降低;且重金属元素含量变化与pH值密切相关,当pH值下降时部分重金属容易重新释放出来而进入环境中。库湾下游具有较中上游高得多的重金属含量,沉积物中重金属的污染程度为无污染到轻度污染,且轻度污染出现于下游至干流。三峡水库蓄水前香溪河沉积物中重金属含量顺序大致为Zn>Pb>Cu>As>Cd,而蓄水后香溪河及干流沉积物均表现为Cu含量高于Pb。  相似文献   

11.
两种土地利用方式下土壤重金属污染特征与评价   总被引:1,自引:0,他引:1  
为研究安徽铜陵某矿区耕地和人工林地两种土地利用方式下土壤重金属污染特征,应用Tomlinson污染负荷指数法和生物富集系数评价研究区土壤重金属Cd、Cu污染水平和植物重金属富集水平。结果表明:研究区耕地土壤Cd、Cu全量2.34和161.25 mg/kg,均高于林地Cd、Cu全量1.26和80.15 mg/kg,二者均超农用地土壤污染风险筛选值(GB 15618-2018,pH≤5.5)和铜陵市重金属背景值,耕地和林地污染水平分别为中度污染和轻微污染。耕地糙米Cd(0.95 mg/kg)超标严重,黄山栾树地上部Cd、Cu富集系数均低于水稻地上部。综上,黄山栾树人工林地Cd、Cu污染轻于耕地,退耕还林是研究区更佳的土地利用选择。  相似文献   

12.
南方重金属矿区重金属的污染特征及评价   总被引:6,自引:0,他引:6  
 采用全面踏查和典型调查相结合的方法,对福建主要重金属矿区的尤溪铅锌矿、连城铅锌矿和连城锰矿不同片区重金属污染状况进行调查。结果表明:福建重金属矿区重金属污染极其严重,矿区中Mn、Zn、Pb、Cd最高含量分别达92 546、27 454、23 792和248 mg/kg,是对照区的几倍至上百倍。根据国家土壤环境质量三级标准,按照重金属单项污染指数标准进行的污染评价表明:南方重金属矿区Zn、Pb、Cd均达到重度污染标准,污染程度表现为尤溪铅锌矿区>连城铅锌矿区>连城锰矿区。按照综合污染指数评价标准,福建连城铅锌矿、连城锰矿和尤溪铅锌矿的综合污染指数也达到重度污染标准,分别是重度污染临界标准的16.5、10.6和53.6倍,不同矿区的重金属污染程度大小排序为尤溪铅锌矿区>连城铅锌矿区>连城锰矿矿区。  相似文献   

13.
三峡库区农田面源污染典型区域制图及其研究现状评价   总被引:1,自引:0,他引:1  
利用GIS空间叠加分析方法,通过遴选影响库区农田面源污染关键因子,获得了3大类8小类库区农田面源污染典型区,从空间分布格局的角度对这些典型区做了深入的比较分析,并提出土壤类型是导致不同典型区分布差异的主导因素。在此基础上,对国内外已在库区内开展农田面源污染研究工作的相关研究区进行了典型性分布现状评价,研究认为:(1)目前针对“紫色土-旱地-林地-水田”农田面源污染典型区的研究区设置较完善,在整个库区中的分布格局也较合理,有利于相关研究成果在该区推广应用;(2)对“黄壤-旱地-林地”典型区研究较少,无法满足整个库区尺度下的应用需求,需加强对库区中部和库尾相关区域的研究区配置;(3)由于对“石灰(岩)土-林地”典型区的研究缺失,亟需开展该区内农田面源污染研究工作。研究获得的不同类型典型区分布图可为相关研究区的选择提供必要的决策依据。此外,研究虽只是针对农田面源污染开展了典型区制图分析,但研究方法具有一定的推广性,在必要数据支持下,可应用于三峡库区或其他区域农业面源污染典型区制图研究  相似文献   

14.
城市典型工业区土壤重金属污染状况研究   总被引:31,自引:4,他引:31  
城市土壤既直接影响密集的城市人群,涉及众多的生命健康与安全,还通过水体、大气间接地影响城市环境的质量,因此对城市土壤污染的研究正逐渐受到人们的重视。为了解南京市典型工业企业对其所在地周围住宅区土壤中重金属含量的影响及其污染现状,选择南京梅山炼焦厂、南化磷肥厂、南京炼油厂、扬子芳烃厂、南京钢铁厂等5个典型工业区进行监测调查。结果表明,南京市典型工业区厂区土壤中Cu、Zn、Pb、Cd、Hg和As元素的含量都明显高于附近住宅区土壤中含量,Cr和Ni两种元素含量与其附近住宅区土壤中含量没有明显差异。分析各工业区土壤重金属污染特征发现,炼焦厂主要异常元素为锌;磷肥厂主要为铜、铅、镉、汞、砷;炼油厂主要为镍;扬子芳烃厂主要为铅;南京钢铁厂主要为铅、镉、汞。本次调查发现,对照南京市土壤背景值,典型工业用地土壤中除Cr元素外,其他7个重金属元素都存在一定程度的富集现象。  相似文献   

15.
上海市崇明岛公路两侧土壤重金属污染研究   总被引:4,自引:0,他引:4  
采集了上海市崇明岛陈海、北沿公路两侧土壤和灰尘样品270余个,测定了样品的Pb、Cd、Cu、 Zn和Cr重金属含量。结果表明,陈海和北沿公路两侧土壤重金属Pb、Cd、Cu、 Zn和Cr的平均含量达到277、0279、258、918和776 mg/kg,土壤Cd污染较严重。采集的路面灰尘样品Pb、Cd、Cu、 Zn和Cr的平均含量达到512、049、489、209和970 mg/kg,超过土壤背景值2~4倍,是土壤重金属的主要二次污染源。公路防护林体系较差的北沿公路路侧土壤纵向剖面(垂直于公路走向)重金属含量随距路肩距离增加呈指数下降,土壤重金属重污染区在距路肩15 m范围内。防护林体系较完善的陈海公路距路肩15 m范围内土壤重金属污染较小,土壤重金属重污染区出现在距路肩20~50 m范围内。  相似文献   

16.
通过对昆山市14个区镇91个土壤样品中As、Cd、Cr、Cu、Pb、Ni、Hg、Zn 8种重金属测定分析,对该市耕地土壤重金属污染进行评价并进行重金属污染的影响因素分析.结果表明,昆山市耕地土壤存在不同程度的轻微污染,重金属Cd、Cr、Cu、Pb、Hg、Zn均超过国家土壤背景值,旱地、水田中均以Hg污染范围较广、变异系数较大.综合污染指数表现为水田(1.15)>旱地(1.00).区镇耕地重金属污染评价表明千灯、陆扬、石浦、锦溪、石牌处于警戒值之内,蓬朗、周庄、张浦、正仪、周市、巴城、淀山湖、花桥、陆家轻度污染;昆山市耕地土壤中重金属元素均未超过土壤环境基本容量,能够保证作物品质和农业持续发展.同时,研究表明区域重金属轻微污染具有复合污染的特性,Cd、Pb相关性最高(P=0.621 0), Pb与Hg、Cu、Zn、Cu与Cr也有相关性(0.438 7、0.426 0、0.350 9、0.394 0),区域重金属的轻微污染受人为因素影响显著,研究指出应加强对区域优先控制污染物Hg、次优先控制污染物Pb、Cd、Zn、Cu、Cr的控制与治理.  相似文献   

17.
城市土壤重金属会对生态环境和人体健康产生潜在危害。为研究我国主要城市土壤中重金属污染现状,本文搜集2007—2016年最新发表的关于我国城市土壤重金属污染的科研论文,筛选出23个城市10种重金属的污染信息,分析其含量分布特征,定量评估其可能存在的生态风险和健康风险。研究表明我国城市土壤重金属污染较为严重,工业越发达含量越高。Nemerrow综合污染指数法研究表明我国城市土壤重金属存在潜在的生态风险。健康风险评价表明,全国各城市土壤中重金属对人体有潜在的非致癌风险,儿童的非致癌风险高于成人,As和Cr是非致癌风险的主要来源。致癌风险研究表明,城市土壤重金属会对人体产生致癌效应。本研究可为我国城市发展提供借鉴。  相似文献   

18.
为揭示江苏省浅水湖泊表层沉积物重金属污染特征,采集江苏省8个浅水湖泊的表层沉积物,测定了8种重金属的含量,并利用地积累指数法和潜在生态风险指数法对沉积物重金属的污染现状以及潜在生态风险程度进行评价。结果表明:江苏省8个浅水湖泊表层沉积物中Mn、Zn、Cr、Ni、Cu、As、Cd、Pb的平均含量分别为634~1 031、66~138、76.0~97.5、39.2~56.3、25.2~50.1、9.9~27.1、0.15~2.98、24.6~51.6mg/kg。地积累指数法评价结果表明,Cd是江苏省8个浅水湖泊表层沉积物中最主要的污染物,Zn、Cu、As、Pb、Ni在一些湖泊为轻度污染,Mn和Cr处于无污染水平。Hkanson潜在生态风险指数法评价结果显示,各湖泊综合潜在生态风险程度的高低顺序为:长荡湖石臼湖白马湖滆湖高邮湖洪泽湖澄湖骆马湖,长荡湖达到严重生态风险水平,石臼湖存在重生态风险,白马湖与滆湖处在中等生态风险水平,而骆马湖、洪泽湖、高邮湖以及澄湖重金属污染则处于低生态风险水平。  相似文献   

19.
滴水湖沉积物中重金属污染特征与评价   总被引:1,自引:0,他引:1  
分析滴水湖及其周边沉积物中Hg、As、Cu、Cd、Pb、Zn和Cr等7种重金属含量特征,并用地累积指数法、潜在生态风险指数法和主成分分析法对沉积物中的重金属污染状况进行了评价和分析。结果表明,滴水湖沉积物中As和Pb低于上海市潮滩背景值,Hg、Cd、Zn和Cr均高于潮滩背景值,50%样点的Cu高于潮滩背景值;地累积指数法评价结果表明滴水湖沉积物中Cr的平均污染水平为偏中污染,Hg、Cd和Zn为轻度污染,As、Cu和Pb为清洁水平;潜在生态风险指数法评价结果表明滴水湖沉积物重金属为中等生态风险,Hg和Cd是潜在生态风险的主要贡献元素;主成分分析结果表明,滴水湖沉积物中Hg、Cu、Cd、Pb、Zn和Cr主要来自于人为源,As主要来自底质滩涂  相似文献   

20.
南京地区农田土壤和蔬菜重金属污染状况研究   总被引:30,自引:2,他引:30  
采集了南京市5县4郊5个环境单元(矿冶区、交通干线、工厂周边、污灌地、农产品基地)共100个样点的农田土壤及部分蔬菜样品,测定了重金属(Pb、Cu、Zn、Cd)的质量分数。结果表明,土壤Pb、Cu、Zn、Cd 质量分数的变化范围分别为26.1~4 138.8、16.5 ~3 375.1、46.0~3 587.6、0.09~17.61 mg/kg。不同功能区土壤重金属含量存在明显差异,以矿区周边农田污染最为严重,其次为污灌地和公路沿线农田, 部分农产品基地存在轻度Cd污染,工厂周边农田土壤污染相对较小。19个样点的青菜地上部重金属Pb、Cu、Zn、Cd质量分数的变化范围分别为0.11~7.11、5.04~76.42、36.8~364.3、0.04~2.96 mg/kg,同样以矿区周边污染农田的青菜样本重金属含量最高。青菜重金属含量与土壤重金属生物有效性含量和总量之间呈极显著相关。不合理的矿业开采和冶炼是导致南京地区农田土壤和蔬菜重金属污染的重要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号