首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thane district is one of the most industrialized districts in Maharashtra. The heavy industrialization and the increasing urbanization are responsible for the rapidly increasing stress on the water and soil environment of the area. Therefore, an attempt has been made through comprehensive study on the groundwater contamination and soil contamination due to heavy metals in Thane region of Maharashtra. The area undertaken for the study was Thane and its suburbans Kalwa, Divajunction, Dombivali, Kalyan, and Ulhasnagar. Industrialization and urbanization lead to generation of large volumes of wastewater from domestic, commercial, industrial, and other sources, which discharged in to natural water bodies like river and creek in this region. Groundwater samples and soil samples were collected from residential, commercial, agriculture, and industrial areas. Groundwater samples were analyzed for various water quality parameters. The analytical data shows very high concentration of total dissolved solids, total hardness, total alkalinity, chemical oxygen demand, chloride etc. Groundwater and soil samples were analyzed for ten heavy metals by inductively coupled plasma (ICPE-9000) atomic emission spectroscopy. The analytical data reveal that, very high concentration level of arsenic, cadmium, mercury, and nickel throughout the industrial area. The random dumping of hazardous waste in the industrial area could be the main cause of the groundwater and soil contamination spreading by rainwater and wind. In the residential areas the local dumping is expected to be the main source for heavy metals. A comparison of the results of groundwater with WHO guidelines show that most of the groundwater sampling station are heavily contaminated with organic matter and heavy metals. Groundwater samples are heavily contaminated by arsenic, cadmium, mercury, and nickel. Similarly, the results of heavy metals in soil compared with Swedish soil guideline values for polluted soil show that soil samples collected from residential, commercial and industrial areas are heavily contaminated by arsenic, cadmium, mercury, and nickel.  相似文献   

2.
Qiantang River is a typical river used for drinking water source, flowing through agricultural area in east China. Surface water samples at 45 sampling sites from the river were collected and analyzed for 13 organochlorine pesticides (OCPs) during six surveys in 2 years of 2005–2006. Sediments, soils, farmland runoff water and dry/wet deposition of this region were also measured for their OCPs residue in order to know possible source of OCPs contamination. The total OCPs concentrations in surface water were 7.68–615.2 ng/l. β-HCH, δ-HCH, Aldrin, Heptachlor, Heptachlor epoxide are the major OCPs in water. The maximum levels of OCPs in water were found in July, while significantly lower OCP concentrations were measured in January. Significant linear correlation was found between the concentration of HCH and that of total 13 OCPs in water. The measured OCP concentrations in sediments, soils, farmland runoff water and dry/wet deposition are discussed in relation to concentrations and patterns found in the surface water. Comparison of OCP levels in sediments and soils led to conclusion that erosion of soil contribute significantly to the contamination of water. The OCPs dry and wet deposition to water body was estimated to 0.49 and 0.86 ton/year, respectively. The ratio of α/γ-HCH and (DDE+DDD)/∑DDT in environmental matrix indicated there probably existed new OCPs input of lindane and dicofol into the river.  相似文献   

3.
Characterization of Rain and Roof Drainage Water Quality in Xanthi, Greece   总被引:1,自引:0,他引:1  
Thirteen field campaigns were undertaken in the period from December 2, 2002 until September 1, 2004 to collect water samples in order to characterize the quality of rainfall and roof drainage in the city of Xanthi, a typical provincial city in Greece. In each campaign, water samples were collected from 10 representative sites in the city (in total 130 samples), representing areas of distinct land use and human activities (i.e., traffic volume, residence density and industrial activity). The water samples were analyzed according to drinking water criteria for total coliform (not detected), temperature (range: 0.9–20°C), pH (range: 3.6–11.4), alkalinity (range: 0–21.5 mg CaCO3/L), nitrate (range: 0–2456 μg/L), ammonium (range: 0–2628 μg/L), sulfate (range: 0–0.5 mg/L), calcium (range: 259.1–3064 μeq/L), magnesium (range: 0.8–488.8 μeq/L), potassium (range: 0.0–110.6 μeq/L) and dissolved heavy metals (Fe, range: 0.01–0.18 mg/L; Mn, range: 0.01–0.09 mg/L; Zn, range: 0.01–0.54 mg/L; Cu, Cr and Ni, not detected). Pollutant concentrations were generally higher in roof drainage than in rainwater, but both were lower than drinking water standards. Dissolved heavy metal concentrations were generally higher in the areas of intensive human activities, such as roads with high traffic volume and densely populated residential areas. The satisfactory quality of rainwater, which results from this analysis, makes its use as grey water possible.  相似文献   

4.
Urban road dust samples were collected from different land use areas in Suzhou, Wuxi, and Nantong, Yangtze River Delta, China. The dust samples were analyzed for the levels and compositional profiles of deca-polybrominated diphenyl ethers (Deca-BDE), 22 organochlorine pesticides (OCPs), and 16 polycyclic aromatic hydrocarbons (PAHs). The levels of BDE-209, ∑OCPs, and ∑PAHs in samples ranged from 4.01–1,439 μg/kg, 3.15–615 μg/kg, and 2.24–58.2 mg/kg, respectively. PAHs were the predominant target compounds in road dust samples, comprising on average 97.7 % of total compounds. The spatial gradient of the pollutants (commercial/residential area> industrial area > urban park concentrations) was observed in the present study. The results indicated that the levels of BDE-209, OCPs, and PAHs observed in road dust were usually linked to anthropogenic activities in the urban environment. In addition, there might be a reflection of current usage or emissions of OCPs in urban environment.  相似文献   

5.
This study reports the concentration levels and distribution pattern of the organochlorine pesticide (OCPs) residues in the soil and surface water samples collected from the northern Indo-Gangetic alluvial plains. A total of 31 soil and 23 surface water samples were collected from the study region in Unnao district covering an area of 2150 km2 and analyzed for aldrin, dieldrin, endrin, HCB, HCH isomers, DDT isomers/metabolites, endosulfan isomers (α and β), endosulfan sulfate, heptachlor and its metabolites, α-chlordane, γ-chlordane and methoxychlor. In both the soil and surface water samples β- and δ-isomers of HCH were detected most frequently, whereas, methoxychlor was the least detected pesticide. The results showed contamination of soil and surface water of the region with several persistent organic pesticides. The total OCPs level ranged from 0.36–104.50 ng g–1 and 2.63–3.72 μg L–1 in soil and surface water samples, respectively.  相似文献   

6.
A total of 1094 water samples from 326 springs, 207 streams, 183 dug wells, 151 piped supplies, 90 tube wells, 75 hand pumps, 60 rivers and 2 lakes were collected from eight northern and six north-eastern districts of India. Samples were analysed to assess their potability by estimating the level of heavy metals and bacterial (coliform and faecal coliform) contaminations. Iron was found in a maximum number (53%) of water samples from hand pumps, followed by lead in 43% of the tube wells, chromium in 16% of dug wells, cadmium in 13% of streams and manganese in 7% of hand pumps above their maximum admissible concentrations (MACs). Maximum metal pollution has been observed in a considerable number of water samples from Doda, followed by Almora, Mirzapur and Bankura. Hand pump water samples exhibited maximum metal pollution followed by dug well, spring, stream and river water samples. Contamination of coliform and/or faecal coliform bacteria ranged between 41% and 67% of water samples from open water sources but it was also less, i.e. 6–15% of water samples from tube wells and hand pumps. In general, 42–85% of water samples from districts surveyed, except from Jammu (18%) and Mirzapur (27%), were found to be bacteriologically unsatisfactory. Since toxic metals and pathogenic bacteria pose a risk to public health, monitoring of drinking water sources is required.  相似文献   

7.
The levels of 17 organochlorine pesticides residues (OCPs) in surface water and sediments from Tamiraparani river basin, South India were investigated to evaluate their potential pollution and risk impacts. A total of 96 surface water and sediment samples at 12 sampling stations were collected along the river in four seasons during 2008–2009. The ΣOCP concentrations in surface water and sediments were in the range of 0.1 to 79.9 ng l−1 and 0.12 to 3,938.7 ng g−1 dry weight (dw), respectively. Among the OCPs, the levels of dichlorodiphenyltrichloroethanes (DDTs), aldrin, dieldrin, cis-chlordane, trans-chlordane, and mirex were dominant in the sediments. The dominant OCPs in water samples are heptachlor, o,p′-DDE, dieldrin, o,p′-DDD, and mirex, which show different source of contamination pattern among sampling seasons. The distribution pattern of DDTs, hexachlorocyclohexane, and other OCPs in the present study shows heterogenic nature of nonpoint source of pollution. Notable contamination of water and sediment sample that was observed in upstream (S2) 58 ng l−1 and downstream (S11) 1,693 ng g−1 dw explains agricultural and municipal outfalls, whereas frequent damming effect reduces the concentration level in the midstream. The overall spatial–temporal distribution pattern of ΣOCP residues are illustrated by GIS package.  相似文献   

8.
The Linggi river drainage basin in Negeri Sembilan, Malaysia supplies water to the whole of Port Dickson district and meets 50% of the Seremban district needs. The Linggi River, the main tributary, passes through the highly urbanised and densely populated Seremban district while the water treatment plant is located 16 km downstream. In 1979 the USEPA declared the river unsuitable as a source of raw water whereas the WHO classified it as being heavily polluted requiring more extensive and effective treatment. In order to meet the WHO drinking water standards, an ozonation system was installed in the conventional water treatment plant. The objective of ozonation is for the control and removal of organic micropollutants and other deleterious matters. This study investigated the concentrations and distribution of organic micropollutants, heavy metals, and bacteriological counts in water samples collected from within the catchment and the treated water. The effectiveness of the ozonation system was also studied. The total level of phenolic water pollutants in the catchment was generally found to be very much higher than the maximum recommended level of 2.0 µgl-1. The extensive treatment process carried out at the plant was very effective in reducing the levels of total phenols in the treated water to less than 1.0 µgl-1. However the process was not efficient enough to reduce the levels of some heavy metals as required by the standards, for examples Cd and Pb were still three times higher than the standards of 5µgl-1 and 0.05 mgl-1 respectively. For bacteriological study, coliform group of bacteria, Salmonella, faecal streptococci and injured coliform were monitored in the raw and treated water. The raw water contained coliforms about 1000 times higher than the required standard for raw ater, but after the secondary treatment by ozonation coliform bacteria were absent, however a small number of Salmonella was still present occasionally. The study also showed that restructuring of the district and relocating of some commercial activities along the river banks to other areas carried out over the last five years has improved the general quality of the river water.  相似文献   

9.
A total of 16 people died and over 500 people were hospitalized due to diarrhoeal illness in the Bholakpur area of Hyderabad, India on 6th May 2009. A study was conducted with immediate effect to evaluate the quality of municipal tap water of the Bholakpur locality. The study consists of the determination of physico-chemical properties, trace metals, heavy metals, rare earth elements and microbiological quality of drinking water. The data showed the variation of the investigated parameters in samples as follows: pH 7.14 to 8.72, EC 455 to 769 μS/cm, TDS 303.51 to 515.23 ppm and DO 1.01 to 6.83 mg/L which are within WHO guidelines for drinking water quality. The water samples were analyzed for 27 elements (Li, Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba and Pb) using inductively coupled plasma-mass spectrometry (ICP-MS). The concentrations of Fe (0.12 to 1.13 mg/L), Pb (0.01 to 0.07 mg/L), Cu (0.01 to 0.19 mg/L), Ni (0.01 to 0.15 mg/L), Al (0.16 to 0.49 mg/L), and Na (38.36 to 68.69 mg/L) were obtained, which exceed the permissible limits of the World Health Organization (WHO) for drinking water quality guidelines. The remaining elements were within the permissible limits. The microbiological quality of water was tested using standard plate count, membrane filtration technique, thermotolerant coliform (TTC), and most probable number (MPN) methods. The total heterotrophic bacteria ranged from 1.0 × 105 to 18 × 10cfu/ml. Total viable bacteria in all the water samples were found to be too numerable to count and total number of coliform bacteria in all water samples were found to be of order of 1,100 to >2,400 MPN index/100 ml. TTC tested positive for coliform bacteria at 44.2°C. All the water samples of the study area exceeded the permissible counts of WHO and that (zero and minimal counts) of the control site (National Geophysical Research Institute) water samples. Excessively high colony numbers indicate that the water is highly contaminated with microorganisms and is hazardous for drinking purposes. Bacteriological pollution of drinking water supplies caused diarrhoeal illness in Bholakpur, which is due to the infiltration of contaminated water (sewage) through cross connection, leakage points, and back siphoning.  相似文献   

10.
The development of essential services including water and sanitation in many megacities of the economically developing countries of Asia cannot keep pace with their rapidly growing population and accompanying urban and industrial development. The inadequate water supply and poor sanitation services lead to contamination of their water supply. It also leads to the input of sewage water into the groundwater. The problem is seriously acute in Karachi, the largest city in Pakistan with a population of over 12 million and growing at 6 percent. This paper examines the problem of water contamination in Karachi. The paper presents the data on water quality from various sources, mainly municipal water supply, vendors and well water; the three major sources of water for domestic use in Karachi. Except municipal water from some areas and during certain periods, water from most other sources contain coliform bacteria, and in many cases faecal coliform, in amounts several magnitudes higher than any standards permit. Many samples have also been found to contain heavy metals including Chromium, Lead, Nickel and Arsenic in amounts excessive of permitted standards. The probable sources of contaminants for the various types of water (piped, vendors, wells) indicate that groundwater may be the main contributor. The very source of this groundwater is predominantly from sewage. The health hazards from consuming such contaminated water are obvious. The paper also evaluates the solutions that are being practiced, proposed or may be feasible, as well as those that are evolving.  相似文献   

11.
A study on the quality of water abstracted for potable use was conducted in the Selangor River basin from November 2008 to July 2009. Seven sampling sites representing the intake points of water treatment plants in the basin were selected to determine the occurrence and level of 15 organochlorine pesticides (OCPs), six phthalate esters (PAEs) and bisphenol A (BPA). Results indicated OCPs were still detected regularly in 66.1 % of the samples with the Σ15OCPs ranging from 0.6–25.2 ng/L. The first data on PAEs contamination in the basin revealed Σ6PAEs concentrations were between 39.0 and 1,096.6 ng/L with a median concentration of 186.0 ng/L while BPA concentration ranged from <1.2 to 120.0 ng/L. Although di-n-butyl phthalate was detected in all the samples, concentrations of di-ethyl(hexyl)phthalate were higher. Sampling sites located downstream recorded the highest concentrations, together with samples collected during the dry season. Comparison of the detected contaminants with the Department of Environment Water Quality Index (DOE-WQI) showed some agreement between the concentration and the current classification of stream water. While the results suggest that the sites were only slightly polluted and suitable to be used as drinking water source, its presence is cause for concern especially to the fragile firefly “Pteroptyx tener” ecosystem located further downstream.  相似文献   

12.
The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23± 0.05 to 87.05± 0.29 μg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.  相似文献   

13.
Rapid growth in urbanization and industrialization in developing countries may significantly contribute in heavy metal contamination of vegetables through atmospheric depositions. In the present study, an assessment was made to investigate the spatial and seasonal variations in deposition rates of heavy metals and its contribution to contamination of palak (Beta vulgaris). Samples of bulk atmospheric deposits and Beta vulgaris for analysis of Cu, Zn, Cd and Pb were collected from different sampling locations differing in traffic density and land use patterns. The results showed that the sampling locations situated in industrial or commercial areas with heavy traffic load showed significantly elevated levels of Cu, Zn and Cd deposition rate as compared to those situated in residential areas with low traffic load. The deposition rates of Cu, Zn and Cd were significantly higher in summer and winter as compared to rainy season, however, Pb deposition rate was significantly higher in rainy and summer seasons as compared to winter season. Atmospheric depositions have significantly elevated the levels of heavy metals in B. vulgaris collected during evening as compared to those collected in morning hours. The study further showed that local population has maximum exposure to Cd contamination through consumption of B. vulgaris. The present study clearly points out the urban and industrial activities of a city have potential to elevate the levels of heavy metals in the atmospheric deposits, which may consequently contaminate the food chain and thus posing health risk to the local population.  相似文献   

14.
Concern over the presence of fecal coliform in public drinking water supplies has been expressed in recent years in Pakistan since it has been regarded as pathogenic organism of prime importance in gastroenteritis. Two major drinking water distribution systems in the Cantt area of Rawalpindi district covering the Westridge and Tench areas was monitored over a 2-month period to determine the prevalence of fecal coliform and chlorine residual. The collected samples were examined for total chlorine, free chlorine residual, chloramines, total coliforms, fecal coliforms, and turbidity. The drinking water quality monitoring in the distribution network was performed by collecting samples from water source, overhead reservoir, and residential taps. In the Westridge area, total chlorine varied from the lowest value of 0.27 mg/L at Station # W-5 to the highest value of 0.42 mg/L at Station # W-2, total coliforms varied from 1.1 to 3.6 most probable number (MPN)/100 mL with presence of Escherichia coli in all samples, total dissolved solids (TDS) ranged from 199.5 to 205 mg/L, conductivity fluctuated between 399 and 411 microS/cm, and turbidity varied from 0.43 to 0.73 NTU. In the Tench area, the value of total chlorine ranged from 0.14 mg/L at Station # T-7 to 0.55 mg/L at Station # T-1. Total coliform varied from 3.6 to 5.1 MPN/100 mL and fecal coliform were detected at all the stations except at Station # T-1. TDS ranged from 201.4 to 257 mg/L, conductivity varied from 343 to 513 microS/cm, and turbidity ranged between 0.66 and 1.55 NTU. It is recommended to the respective agencies to ensure that the chlorine residual is available at consumer end.  相似文献   

15.
Physical and chemical parameters have been analyzed in water samples from a brackish water lagoon, Küçükçekmece, located on the western outskirts of Istanbul. Samples were collected every two months for a year from nine sampling stations. Of the parameters measured, temperature, pH, salinity, nitrate and phosphate showed changes when compared with the previously published data. The lagoon was found eutrophic as it was reported previously. Sulphate and COD levels were higher when compared with the standards established by the Turkish Water Pollution and Control Regulation. Additionally, concentrations of heavy metals (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn) in water and bottom sediments were measured and compared with the standards established by the Turkish Water Pollution and Control Regulation and with the previously published data. The results were analysed statistically with respect to location and any relationships between the concentration of the elements in corresponding water and sediment samples were examined. Principal Component Analysis of water samples allowed us to discriminate three areas affected mainly by heavy metal contamination, possibly due to industrial, commercial and/or urban activities. Generally, the concentrations of the heavy metals were higher at stations near the three estuaries, suggesting a direct influence of the three creeks on the pollution of the Küçükçekmece Lagoon. Although elevated levels of Cd were recorded in several water samples, it was not detected in sediment. On the other hand, a particularly high level of Cr pollution was recorded most of the water and sediment samples.  相似文献   

16.
The organochlorine pesticide contamination in dietary sources has caused serious threat to the human progeny. The present study was therefore conducted to evaluate the pesticide contamination in wheat flour and drinking water from Jaipur City, Rajasthan, India using Gas Chromatograph. All the wheat and water samples were found to be contaminated with various organochlorine pesticide residues of DDT and its metabolites, HCH and its isomers, heptachlor and its expoxide and aldrin. The amount of pesticide detected in wheat flour was higher than the permissible limits prescribed by WHO/FAO. In drinking water only a few pesticides exceeded the permissible limits. Seasonal variations of pesticides residues were also observed during the study period.  相似文献   

17.
Heavy metal induced ecological risk in the city of Urumqi, NW China   总被引:2,自引:0,他引:2  
A total of 169 samples of road dust collected in the city of Urumqi, capital of the Xinjiang Uygur Autonomous Region in northwest China, were analyzed by method of inductively coupled plasma-mass spectrometry for 10 elements (i.e., Cd, Cr, Cu, Ni, Pb, Mn, Be, Co, Zn, and U). The possible sources of metals are identified with multivariate analysis such as correlation analysis, principal component analysis, and cluster analysis. Besides, enrichment factors are used to quantitatively evaluate the influences of human activities on heavy metal concentrations. Moreover, the potential ecological risk index is applied to evaluating the ecological risk of heavy metal pollutants. The results indicate that: (1) the concentrations of the heavy metals involved were much higher in urban areas than the background values, except those of Co and U. Mn, U, and Co are mainly of natural origin; Cu, Pb, Zn, and Cr are mainly of traffic sources and are partly of industrial sources; Ni and Be are mainly the results of industrial activities, such as machine shops, firepower plants, tire and rubber factories, cement factories, and textile mills and are partly of the traffic sources; (2) with high “toxic-response” factor and high concentration, Cd has more serious influences on the environment than other heavy metals. Therefore, commercial and industrial areas are usually characterized by higher potential ecological risk when compared with residential areas and new developing urban areas. The results of this study could be helpful for the management of environment in industrial areas.  相似文献   

18.
Use of industrial and wastewater for irrigation is on the rise in India and other developing countries because of scarcity of good-quality irrigation water. Wastewaters contain plant nutrients that favour crop growth but leave a burden of heavy metals which can enter the food chain and is a cause of great concern. The present study was undertaken on the long-term impact of irrigation with treated sewage water for growing vegetables and the potential health risk associated with consumption of such vegetable. Treated sewage water (TSW), groundwater (GW), soil and plant samples were collected from peri urban vegetable growing areas of Northern India (Varanasi) and analysed to assess the long-term effect of irrigation with TSW on Cd, Cr, Ni and Pb build-up in soils and its subsequent transfer into commonly grown vegetable crops. Results indicate that TSW was richer in essential plant nutrients but contained Cd, Cr and Ni in amounts well above the permissible limits for its use as irrigation water. Long-term application of TSW resulted in significant build-up of total and DTPA extractable Cd, Cr, Ni and Pb over GW irrigated sites. TSW also resulted in slight lowering in pH, increase in organic carbon (1.6 g kg − 1) and cation exchange capacity (5.2 cmol kg − 1). The tissue metal concentration and relative efficiency of transfer of heavy metals from soil to plant (transfer factor) for various groups of vegetables were worked out. Radish, turnip and spinach were grouped as hyper accumulator of heavy metals whereas brinjal and cauliflower accumulated less heavy metals. Health risk assessment by consumption of vegetables grown with TSW indicated that all the vegetables were safe for human consumption. However, significant accumulation of these heavy metals in soil and plant needs to be monitored.  相似文献   

19.
Sixty home made wine and sixty-four grape samples were collectedfrom five territories in Jordan, where grapes and wine aremostly producted. The collected samples were analyzed for themost used organochlorine pesticides (OCP) and organophosphorouspesticides (OPP) in Jordan, as well as for four heavy metals(Ni, Cu, Zn and Pb). The results showed that OCPs residues weredetected in 73% of the wine samples but no OPPs residue weredetected which is due to generally shorter half life of thelater pesticide. Grapes showed higher incident of contaminationthan wine, however, OCPs and OPPs with both short and longhalf-lives were detected. The OPPs were detected in only8.3% of the analyzed grape samples. Heavy metals showed higher valuesin grapes than in the wine samples and it was attributed toremoval of solids during wine preparation processes or throughcontamination of wine during storage. Most of the samples werebelow toxic limit.  相似文献   

20.
A study was conducted to evaluate the heavy metal contamination status of groundwater in Brahmaputra flood plain Barpeta District, Assam, India. The Brahmaputra River flows from the southern part of the district and its many tributaries flow from north to south. Cd, Fe, Mn, Pb, and Zn are estimated by using atomic absorption spectrometer, Perkin Elmer AA 200. The quantity of heavy metals in drinking water should be checked time to time; as heavy metal accumulation will cause numerous problems to living being. Forty groundwater samples were collected mainly from tube wells from the flood plain area. As there is very little information available about the heavy metal contamination status in the heavily populated study area, the present work will help to be acquainted with the suitability of groundwater for drinking applications as well as it will enhance the database. The concentration of iron exceeds the WHO recommended levels of 0.3 mg/L in about 80% of the samples, manganese values exceed 0.4 mg/L in about 22.5% of the samples, and lead values also exceed limit in 22.5% of the samples. Cd is reported in only four sampling locations and three of them exceed the WHO permissible limit (0.003 mg/L). Zinc concentrations were found to be within the prescribed WHO limits. Therefore, pressing awareness is needed for the betterment of water quality; for the sake of safe drinking water. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号