首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The main objective of the study was to calculate net atmospheric impacts for wood production and utilization in Finnish boreal forest conditions. Net atmospheric impacts were calculated by comparing net CO2 exchanges of the wood production and utilization to the reference management regime. Net CO2 exchanges were simulated with a life cycle assessment (LCA) tool for a Scots pine (Pinus sylvestris L.) stand (MT, Myrtillys-type) in central Finland (Joensuu region, 62°39 N, 29°37 E) over two consecutive rotation periods (100?+?100 years/200 years). Net atmospheric impacts were calculated both for sawn timber and pulpwood, and expressed in kgCO2m?3. According to the results, the production of pulp and sawn timber produced emissions of 0.20 and 0.59 kgCO2m?3 over the 200-year period, respectively, when the unmanagement regime was used as the reference management regime. When 50 % of the processing waste of timber was accounted as an instant emission to the atmosphere, the atmospheric impact increased to 0.55 kgCO2m?3 in pulpwood and to 1.27 kgCO2m?3 in sawn timber over the 200 year period. When turnover rates of sawn timber in the technosystem were decreased by 30 % and the share of energy use was decreased to 30 %, the atmospheric impact decreased by 17 % and 4 % for pulpwood and sawn timber, respectively, compared to the default wood degradation and energy use of 50 %. The utilized LCA approach provided an effective tool for approaching net atmospheric impacts originating from the ecosystem carbon (C) flows and variable wood utilization. Taking the ecosystem production and utilization of wood (i.e. degradation of technosystem C stock) into account, in terms of net CO2 exchange, the mitigation possibilities of wood compared to other products can be accounted for more precisely in the future and C sequestration credited more specifically for a certain wood product.  相似文献   

2.
Specific fossil carbon (C) emissions and primary energy useassociated with the manufacture of different wood product groups inFinland are estimated and expressed as emissions or energy use per amountof wood-based C in raw material and per amount in end product. Thecalculation includes both emissions from supplied fuels within the forestindustries, and from electricity and district heat purchased from externalsources. The results are compared to fossil C emissions from the wholelifecycle of harvested wood products. The results of the study show, forinstance, that the emission of fossil C per wood-based C in end products(MgC/MgC) is of the order of 0.07 for sawn wood and 0.3–0.6 for paperin the manufacturing stage. The primary energy use per wood-based C inend product is of the order of 2 MWh/MgC for sawn wood, whereas forvirgin paper grades the figure is between 17 and 19 MWh/MgC. Theprimary energy content is highest in papers based on chemical pulping, butaround 60% of the energy used is produced in this case from by-productwood wastes (black liquor, bark etc.). The specific fossil C emission andprimary energy divided by the estimated service life of the wood productare measures for the relative burden of maintaining the corresponding woodproduct pool. These figures should be kept in mind when considering woodproducts as a potential C sink option.  相似文献   

3.
In this study a method is suggested to compare the net carbon dioxide (CO2) emission from the construction of concrete- and wood-framed buildings. The method is then applied to two buildings in Sweden and Finland constructed with wood frames, compared with functionally equivalent buildings constructed with concrete frames. Carbon accounting includes: emissions due to fossil fuel use in the production of building materials; the replacement of fossil fuels by biomass residues from logging, wood processing, construction and demolition; carbon stock changes in forests and buildings; and cement process reactions. The results show that wood-framed construction requires less energy, and emits less CO2 to the atmosphere, than concrete-framed construction. The lifecycle emission difference between the wood- and concrete-framed buildings ranges from 30 to 130 kg C per m2 of floor area. Hence, a net reduction of CO2 emission can be obtained by increasing the proportion of wood-based building materials, relative to concrete materials. The benefits would be greatest if the biomass residues resulting from the production of the wood building materials were fully used in energy supply systems. The carbon mitigation efficiency, expressed in terms of biomass used per unit of reduced carbon emission, is considerably better if the wood is used to replace concrete building material than if the wood is used directly as biofuel.  相似文献   

4.
农业残留物燃烧温室气体排放清单研究:以江苏省为例   总被引:9,自引:2,他引:7  
刘丽华  蒋静艳  宗良纲 《环境科学》2011,32(5):1242-1248
通过问卷调查确定了江苏省农业残留物在不同时间阶段(1990~1995、1996~2000、2001~2005和2006~2008年)作为生活燃料和田间直接燃烧的比例,利用燃烧炉模拟秸秆燃烧试验确定了6种农业残留物(水稻、小麦、玉米、油菜、棉花和大豆)燃烧产生的CO2、CO、CH4和N2O的排放因子;基于此,结合江苏省不...  相似文献   

5.
根据IPCC Guidelines(1995)提供的方法,对1990年江浙沪地区水稻田的CH4排放统计计算,并所得数据进行评估和分析。通过计算得到江浙沪地区水稻田CH4排放为1.77Tg,占总CH4排放的53.6%,提出了该地区减少水稻田CH4排放的措施。  相似文献   

6.
There has been growing concern over the build-up of greenhouse gase(GHGs) in the atmosphere, particularly carbon dioxide (CO2), as acause of global warming. The IPCC Third Assessment Report (2001) suggests two ways in which the choice of materials could berelevant. First, some materials, particularly wood, have the advantage thatthey continue to hold carbon (C)in their cells even after being convertedto products. The implications of this feature are well researched. Second,an area that is not well researched relates to the different energyrequirements for producing similar products made with different materials. Using the findings of recent research, this paper compares the energyrequirements and C emissions of manufacturing a product using wood withthat of other materials. The case study of utility poles demonstrates thepositive C and global warming consequences of the lower energyrequirements of wood in the U.S., compared to other materials such assteel or concrete. It demonstrates that GHG emissions associated withutility poles are a small but significant percent of total US annual emissions. Wood utility poles are associated with GHG emission reductions of 163Terragrams (Tg) of CO2 when compared with steel poles. This isabout 2.8 percent of US annual GHG emissions, which are estimated atabout 5.28 Petragrams (Pg) of CO2 annually. Thus, the use ofwooden utility poles rather than steel results in a small but significantreduction in total US emissions.  相似文献   

7.
In Finland the percentage of biomass fuels of total primary energy supply is relatively high, close to 17%. The share of biomass in the total electricity generation is as much as 10%. This high share in Finland is mainly due to the cogeneration of electricity and heat within forest industry using biomass-based by-products and wastes as fuels. Forest industry is also a large user of fossil-based energy. About 28% of total primary energy consumption in Finland takes place in forest industry, causing about 16% of the total fossil carbon dioxide emissions.The Kyoto protocol limits the fossil CO2 and other greenhouse gas emissions and provides some incentives to the Finnish forest sector. There are trade-offs among the raw-material, energy and carbon sink uses of the forests. Fossil emissions can be reduced e.g. by using more wood and producing chemical pulp instead of mechanical one. According to the calculation rules of the Kyoto protocol Finnish forests in 2008–2012 are estimated to form a carbon source of 0.36 Tg C a−1 due to land use changes. Factually the forest biomass will still be a net carbon sink between 3.5 and 8.8 Tg C a−1. Because the carbon sinks of existing forests are not counted in the protocol, there is an incentive to increase wood use in those and to decrease the real net carbon sink. Also the criteria for sustainable forestry could still simultaneously be met.  相似文献   

8.
建筑材料隐含环境影响评估   总被引:1,自引:0,他引:1       下载免费PDF全文
我国建筑业快速发展,建筑开发使用大量的建筑材料给资源和环境带来严重负荷.以上海市为案例,运用生命周期评价方法,基于北京工业大学和Ecoinvent数据库中的建筑材料生产数据,采用ReCiPe法对上海市建筑物的材料隐含环境影响进行评估,并对未来的环境影响潜值进行预测.结果表明:在上海市居住建筑和非居住建筑所产生的各类环境影响中人类毒性、金属损耗最为突出,约占总环境影响的45%和20%;环境影响主要来源于钢筋和木材的生产,对各类环境影响贡献度分别约为47%、17%;高层居住建筑和非居住建筑中的工厂建筑物化环境影响在各自类型中所占比例最高.按现有趋势发展,2020年上海市居住建筑开发规模和环境影响潜值均将达到2014年的1.52倍,非居住建筑则可达到2014年的1.14倍.针对上海市建筑材料环境影响分析结果,为有效减轻上海市建筑物的环境影响,需重点关注钢筋、铝材、木材以及混凝土的生产,识别生产过程中污染物转移环节进而改进工序;在设计阶段考虑选择环境影响负荷低的绿色建材,如混凝土砌块、高性能混凝土等,从而降低环境影响;同时,应重点关注隐含环境负荷高的高层居住和工厂建筑类建筑,通过降低建材使用量等方案降低环境影响.   相似文献   

9.
We have developed two global inventories for black carbon (BC) emissions using two distinct methods. The first method uses measured ambient concentration ratios of BC and SO2 at locations throughout the world. We demonstrate that BC to SO2 ratios are well correlated at most sites and that distinct ratios of BC to SO2 apply to source areas from economically distinct regions. However, within any one economic region, the ratio of BC to SO2 appears to be relatively constant. These facts are used to construct a global inventory of BC emissions by using previously published inventories for the emissions of sulfur. The derived inventory totals nearly 24 Tg C yr−1. The second method uses estimated emission factors and published fuel production and use statistics for wood and bagasse burning, diesel fuel, and domestic and commercial coal use. The combined global emissions using the second method total 12.6 Tg C yr−1. A comparison of the two inventories shows that the estimated emissions from the ratio method are within a factor of two of those derived from emission factors in regions where the data appear to be reliable. The BC inventory from the ratio method is used in the Lawrence Livermore National Laboratory global chemistry/climate model to simulate the world wide distribution of BC. The predicted concentrations are compared with available measurements from throughout the world. This comparison also supports the magnitude of the inventory which we derived from the ratio method to within about a factor of two.  相似文献   

10.
This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process energy and result in lower carbon emissions than buildings of other materials such as brick, aluminium, steel and concrete. If a shift is made towards greater use of wood in buildings, the low fossil fuel requirement for manufacturing wood compared with other materials is much more significant in the long term than the carbon stored in the wood building products.As a corollary, a shift from wood to non-wood materials would result in an increase in energy requirements and carbon emissions.The results presented in this paper show that a 17% increase in wood usage in the New Zealand building industry could result in a 20% reduction in carbon emissions from the manufacture of all building materials, being a reduction of about 1.5% of New Zealand’s total emissions. The reduction in emissions is mainly a result of using wood in place of brick and aluminium, and to a lesser extent steel and concrete, all of which require much more process energy than wood. There would be a corresponding decrease of about 1.5% in total national fossil fuel consumption. These figures have implications for the global forestry and building industries. Any increases in wood use must be accompanied by corresponding increases in areas of forest being managed for long term sustained yield production.  相似文献   

11.
现代建筑材料多数使用钢材、混凝土、木材等高能耗产品,这些材料在生产和运输的过程中会消耗较大的能量,对建筑绿色度和的影响非常大,同时也不利于降低工程预算。通过对建筑资源能源消耗和造价进行调查分析,并对建筑材料对建筑环境负荷影响和建筑工程造价进行了研究,提出基于环境因素设置的工程造价模型。通过实际操作发现,相对于传统的工程造价模型,该模型对工程造价的变化趋势反应的更为直观准确,可以大幅度提高工程造价工作的效率。  相似文献   

12.
江西省2001-2005年森林植被碳储量及 区域分布特征   总被引:14,自引:4,他引:10  
利用"十五"期间(2001-2005年)江西省森林资源二类清查资料,根据优势树种生物量扩展方程,估算江西省森林植被的碳储量和碳密度,并分析其地理分布特征。江西省森林植被的总碳储量为263.87 Tg C(1 Tg C=106 t),其中林分碳储量为214.70 Tg C。在11个地市中,赣州市的森林植被碳储量最大,为70.11 Tg C,其次是吉安市、上饶市和宜春市。江西省森林植被的平均碳密度为26.27 t/hm2,林分平均碳密度为27.20 t/hm2,各地市森林植被的平均碳密度景德镇市最大,为31.65 t/hm2,其次为宜春市、吉安市和鹰潭市。各森林类型中,杉木(Cunninghamia lanceolata)林的碳储量最大,为73.77 Tg C,占江西省林分碳储量的34.36%;硬阔林的碳密度大于其他类型森林,为42.64 t/hm2,是江西省森林植被平均碳密度的1.5倍多。幼、中龄林的碳储量占全省林分碳储量的81.95%,碳密度随着龄级的增长而增加。  相似文献   

13.
The use of wood products is often promoted as a climate change mitigation option to reduce atmospheric carbon dioxide concentrations. In previous literature, we identified longevity and recycling rate as two determining factors that influence the carbon stock in wood products, but no studies have predicted the effect of improved wood use on carbon storage over time. In this study, we aimed at evaluating changes in the lifespan and the recycling rate as two options for enhancing carbon stock in wood products for different time horizons. We first explored the behaviour over time of both factors in a theoretical simulation, and then calculated their effect for the European wood sector of the future. The theoretical simulation shows that the carbon stock in wood products increases linearly when increasing the average lifespan of wood products and exponentially when improving the recycling rate. The emissions savings under the current use of wood products in Europe in 2030 were estimated at 57.65 Mt carbon dioxide (CO2) per year. This amount could be increased 5 Mt CO2 if average lifespan increased 19.54 % or if recycling rate increased 20.92 % in 2017. However, the combination of both strategies could increase the emissions saving almost 5 Mt CO2 more by 2030. Incrementing recycling rate of paper and paperboard is the best short-term strategy (2030) to reduce emissions, but elongating average lifespan of wood-based panels is a better strategy for longer term periods (2046).  相似文献   

14.
When forest is harvested some of the forest carbon ends up in wood products. If the forest is managed so that the standing stock of the forest remains constant over time, and the stock of wood products is increasing, then carbon dioxide is being removed from the atmosphere in net and this should be reflected in accounting for greenhouse gas emissions. We suggest that carbon sequestration in wood products requires cooperation of multiple parties; from the forest owner to the product manufacturer to the product user, and perhaps others. Credit for sequestering carbon away from the atmosphere could acknowledge the contributions of these multiple parties. Accounting under a cap-and-trade or tax system is not necessarily an inventory system, it is a system designed to motivate and/or reward an environmental objective. We describe a system of attribution whereby credits for carbon sequestration would be shared among multiple, contributing parties. It is hoped that the methodology outlined herein proves attractive enough to parties concerned to spur them to address the details of such a system. The system of incentives one would choose for limiting or controlling greenhouse gas emissions could be quite different, depending on how the attribution for emissions and sequestration is chosen.  相似文献   

15.
The carbon (C) sinks and sources of trees that may be accounted for under Article 3.3 of the Kyoto Protocol during the first commitment period from 2008 to 2012 were estimated for the countries of the European Union (EU) based on existing forest inventory data. Two sets of definitions for the accounted activities, afforestation, reforestation and deforestation, were applied. Applying the definitions by the Food and Agricultural Organization of the United Nations (FAO), the trees were estimated to be a C source in eight and a C sink in seven countries, and in the whole EU a C source of 5.4 Tg year−1. Applying the definitions by the Intergovernmental Panel of Climate Change (IPCC), the trees were estimated to be a C source in three and a C sink in 12 countries, and in the whole EU a C sink of 0.1 Tg year−1. These estimates are small compared with the C sink of trees in all EU forests, 63 Tg year−1, the anthropogenic CO2 emissions of the EU, 880 Tg C year−1, and the reduction target of the CO2 emissions, 8%. In individual countries, the estimated C sink of the trees accounted for under Article 3.3 was at largest 8% and the C source 12% compared with the CO2 emissions.  相似文献   

16.
A method is presented for estimating the global warming impact of forest biomass life cycles with respect to their functionally equivalent alternatives based on fossil fuels and non-renewable material sources. In the method, absolute global warming potentials (AGWP) of both the temporary carbon (C) debt of forest biomass stock and the C credit of the biomass use cycle displacing the fossil and non-renewable alternative are estimated as a function of the time frame of climate change mitigation. Dimensionless global warming potential (GWP) factors, GWPbio and GWPbiouse, are derived. As numerical examples, 1) bioenergy from boreal forest harvest residues to displace fossil fuels and 2) the use of wood for material substitution are considered. The GWP-based indicator leads to longer payback times, i.e. the time frame needed for the biomass option to be superior to its fossil-based alternative, than when just the cumulative balance of biogenic and fossil C stocks is considered. The warming payback time increases substantially with the residue diameter and low displacement factor (DF) of fossil C emissions. For the 35-cm stumps, the payback time appears to be more than 100 years in the climate conditions of Southern Finland when DF is lower than 0.5 in instant use and lower than 0.6 in continuous stump use. Wood use for construction appears to be more beneficial because, in addition to displaced emissions due to by-product bioenergy and material substitution, a significant part of round wood is sequestered into wood products for a long period, and even a zero payback time would be attainable with reasonable DFs.  相似文献   

17.
李春萍 《环境工程》2012,(Z2):296-298
为解决丰台北天堂垃圾填埋场600~700t/d矿化垃圾筛上物的处置问题,对其理化性质进行了分析,结果表明:矿化垃圾筛上物中以塑料、砖瓦灰土及木竹3类为主,可燃组分达65%以上,不可燃组分为33%左右;湿基热值为11806.6kJ/kg,灰分含量达40%左右,挥发分仅为25.19%;C、H、O含量较高。矿化垃圾筛上物各组分中:塑料、木竹、织物、细土的含水率均在20%以上;塑料、橡胶的热值均为16736kJ/kg以上,木竹和织物的热值为10460kJ/kg左右;塑料、织物、木竹、橡胶等可燃物的挥发分含量均在50%以上;塑料、橡胶中的N含量较少,但含氯量均较高,织物中C、H、O含量较高。矿化垃圾筛上物仍需要进一步的处理,将可燃组分与无机组分分离,可燃物焚烧利用,无机组分建材利用。  相似文献   

18.
Although many factors influencing the forest C cycle are beyond direct human control, decisions made in forestry and the forest product sector (FPS) can either mitigate or aggravate the net C balance of terrestrial ecosystems. The Canadian Budget Model of the Forest Product Sector (CBM-FPS) described here, was designed to work with a national scale model of forest ecosystem dynamics (the Carbon Budget Model of the Canadian Forest Sector, CBM-CFS). The CBM-FPS accounts for harvested forest biomass C from the time that it enters the manufacturing process until it is released into the atmosphere. It also accounts for the use and production of energy by the FPS, and emission of CO2 during FPS processing. The CBM-FPS accounting framework uses the characteristics of different forest product types to estimate changes in the storage of C in forest products; it tracks C from the transportation of the harvested raw material through various processing steps in sawmills or pulp mills, to its final destination (product, pulp, landfill, atmosphere or recycled). Because not all harvested biomass C is released into the atmosphere in the year it is harvested, the model tracks C retained in various short- and long-lived products, and in landfills. Model results are in general agreement with available data from 1920–1989. Average changes in net C stocks in the FPS, estimated as the difference between harvest C input to the FPS and total losses from the forest product sector is estimated to be 23.5 Tg C yr−1 for the 1985–1989 period. The total FPS pool size at the end of this period is estimated to be 837 Tg C, of which only a fraction (32%) is retained in Canada. The total FPS C stock is small compared to that in the forest ecosystems from which they derive (estimated to contain 86 Pg C in 1989). Nevertheless, the changes in these C stocks contribute significantly to a reduction of the total net atmospheric exchange of the total forest sector (ecosystem and product sector) for that period.  相似文献   

19.
刘晓  胡京南  王红梅  杨丽  张皓 《环境科学》2023,44(4):1924-1932
建材行业是典型的资源和能源消耗型产业,也是大气污染的主要排放源之一.中国作为全球最大的建材产品生产国和消费国,目前针对建材行业排放特征的研究总体较少,数据来源较为单一.以河南省建材行业为研究对象,首次将应急减排清单应用到排放清单构建中,通过对应急减排清单、排污许可和环境统计等多源数据的融合研究,完善和细化了建材行业活动水平数据,建立了更为精准的河南省建材行业排放清单.结果表明,2020年河南省建材行业的SO2、 NOx、一次PM2.5和PM10的排放量分别为21 788、 51 427、 10 107和14 471 t.其中,水泥和砖瓦是河南省建材行业大气污染物排放占比最高的2个行业,合计超过50%,水泥行业NOx排放问题较为突出,砖瓦行业整体治理水平比较落后.豫中和豫北是河南省建材行业排放贡献最高的地区,合计超过全省的60%.建议加快推进水泥行业超低排放改造,针对砖瓦等行业完善地方排放标准,持续提升建材行业大气污染治理水平.  相似文献   

20.
Tropical forests in countries like thePhilippines are important sources and sinks of carbon(C). The paper analyzes the contribution of Philippineforests in climate change mitigation. Since the 1500s,deforestation of 20.9 M ha (106 ha) of Philippineforests contributed 3.7 Pg (1015 g) of C to theatmosphere of which 2.6 Pg were released this century. At present, forest land uses store 1091 Tg(1012 g) of C and sequester 30.5 Tg C/yr whilereleasing 11.4 Tg C/yr through deforestation andharvesting. In the year 2015, it is expected that thetotal C storage will decline by 8% (1005 Tg) andtotal rate of C sequestration will increase by 17%(35.5 Tg/yr). This trend is due to the decline innatural forest area accompanied by an increase intree plantation area. We have shown that uncertaintyin national C estimates still exists because they arereadily affected by the source of biomass and Cdensity data. Philippine forests can act as C sink by:conserving existing C sinks, expanding C stocks, andsubstituting wood products for fossil fuels. Here weanalyze the possible implications of the provisions ofthe Kyoto Protocol to Philippine forests. Finally, wepresent current research and development efforts ontropical forests and climate change in the Philippinesto improve assessments of their role in the nations Cbudgets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号