首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genetic population structure of the precominant zooplankter, the copepod Calanus finmarchicus (Gunnerus), was examined to determine whether genetically distinct populations exist in the Gulf of Maine. C. finmarchicus was sampled in three regions of the Gulf of Maine (Great South Channel, spring 1989; northern Gulf of Maine, winter 1990; Great South Channel and Georges Bank, spring 1990). Copepods from seven locations in the Great South Channel, five in the northern Gulf of Maine and four on or near Georges Bank were assayed for allozyme variation and mitochondrial DNA variation of amplified 16S rRNA and cytochrome b genes. Restriction fragment length polymorphism (RFLP) analyses of both mitochondrial DNA genes revealed no variation among any of the individuals assayed. Analysis of five polymorphic allozyme loci revealed that genetic variation among the three geographic regions was low, and genetic identities were high between all locations (I>0.97). Most of the genetic variation was among locations regardless of region. Chi-square tests were used to examine genetic similarity between specific pairs of locations within and between regions. In the northern Gulf of Maine, genetic homogeneity occurred over larger spatial scales (hundreds of km) than in either the Great South Channel or Georges Bank (tens of km). Only copepods from the Bay of Fundy and Nova Scotian Shelf locations were genetically distinct from Wilkinson Basin copepods at two loci. Copepod populations from the northern locations may have been partially isolated or they may represent immigrant populations (e.g., from the Gulf of St. Lawrence). Several pairs of locations were genetically distinct at one or more loci in the two southern regions. Differences between locations in these regions may represent distinct populations advected into the areas at different times or from different sources (e.g., genetic variation may represent a mixture of genetically distinct northern and southern copepod populations). These results suggest extensive gene flow among populations of C. finmarchicus in the Gulf of Maine with some evidence of genetic population subdivision near the Gulf's northeastern and southern boundaries.  相似文献   

2.
Species boundaries among taxa of colonial marine organisms are often obscured by intraspecific morphological and ecological variation; genetic comparisons of recognized “ecotypes” frequently reveal them to be reproductively isolated species. Based on morphological similarities, it has been proposed that the Mediterranean soft coral Alcyonium (=Parerythropodium) coralloides Pallas, 1766 and its Atlantic congener A. hibernicum belong to one highly variable and geographically widespread species, A. coralloides. I collected A. coralloides from ten Atlantic and three Mediterranean locations in 1990 and 1994, and used differences in colony form, substrate use and color to separate them into five distinct morphotypes. Two occur sympatrically in the Mediterranean (M1, M2) and three have overlapping distributions in the Atlantic (A1, A2, A3). I used allozyme electrophoresis to compare morphotypes genetically at 14 enzyme loci. Where two morphotypes occurred sympatrically, fixed allelic differences at 4 to 6 loci indicated reproductive isolation. In all but one pairwise comparison (M1 and A2), morphotypes whose ranges did not overlap were also separated by large genetic distances. From these results I suggest that the five morphotypes represent four distinct species. A. coralloides comprises two morphotypes (M1, A2) with relatively high genetic identity. A. hibernicum (=A1) is reproductively isolated from A. coralloides and should be retained as a valid species; levels of genetic diversity and heterozygosity within populations support the absence of outcrossing in this reportedly asexual species. Morphotypes M2 and A3 are also reproductively isolated from A. coralloides; they are taxonomically distinct from but belong to the same phylogenetic clade as A. hibernicum. Although preliminary observations suggest that differences in reproductive timing maintain species boundaries in sympatry, wider geographic sampling will be required to elucidate the events leading to speciation within this species complex. Received: 8 May 1998 / Accepted: 8 October 1998  相似文献   

3.
Sympatric populations of two forms of the common dolphin, currently recognized collectively as Delphinus delphis Linnaeus, occur in several areas of the world's oceans. A molecular genetic study was initiated to determine whether these forms are genetically distinct in the Northeast Pacific. We compared mitochondrial DNA sequences from the control region and cytochrome b gene between specimens of the long-beaked and the short-beaked morphotypes collected between 1986 and 1989 off the coast of southern California. Additional short-beaked specimens collected from the eastern tropical Pacific (in 1978 and 1982) and the Black Sea (in 1989) were also compared. There were no shared mitochondrial DNA haplotypes between the two morphotypes, and both gene regions exhibited frequency and fixed nucleotide substitutions between the two morphotypes. This genetic differentiation, coupled with unique morphological characters of the short-beaked and long-beaked morphotypes determined in a parallel study, indicate that although sympatric, these populations of common dolphin are reproductively isolated from one another and may represent separate species.  相似文献   

4.
The coastal shrimp Crangon crangon is an ecologically and commercially important species but there is limited knowledge of its genetic population structure. We utilised amplified fragment length polymorphisms (AFLPs) to investigate population differentiation among eight sampling locations comprising paired sites from north- and south-western Britain, the eastern English Channel and the Baltic Sea. Initial AMOVA and cluster analysis suggested strong differentiation, but outlier analysis identified three loci that might be subject to selection, one of which showed significant latitudinal variation in allele frequencies. Following exclusion of these outlier loci, and also of a divergent, genetically-impoverished sample from the UK Bristol Channel, cluster analysis revealed three major groupings, corresponding to geographical regions: western Britain, the eastern English Channel and the Baltic Sea. AMOVA identified significant differentiation both within and among these regions, with similar variation explained by each hierarchical level. C. crangon shows greater genetic structuring than has been found in many decapod crustaceans studied to date, and our results are consistent with unstable population sizes and gene flow restricted by distance and probably also hydrographic features. Further investigation of temporal stability in population structure is required, but broad-scale homogeneity of fishery stocks should not be assumed.  相似文献   

5.
Phanogenia gracilis sensu lato is a shallow-water crinoid distributed throughout the Indo-western Pacific. The taxonomy of P. gracilis s.l. is clouded by the presence of two distinct morphotypes, each differing in morphology and ecology. The goal was to determine the taxonomic status of P. gracilis s.l. using partial gene sequences of two mitochondrial DNA genes, cytochrome oxidase c subunit I and NADH dehydrogenase subunit II, in conjunction with morphological and ecological data. The molecular phylogenies revealed three lineages separated by 5.0–6.6% corrected genetic distance, which is consistent with the genetic distances among other echinoderm species. Neither morphotype was monophyletic, nor was any examined morphological character exclusive to any one lineage. Discriminant function analysis (DFA) of the morphological and ecological data yielded significant results when grouping P. gracilis by morphotype and by clades recovered in the phylogenetic analyses, but grouping by sample locality was rejected. Although DFA results of grouping by clade were significant, jackknife support was weak, while only correctly grouping specimens by their respective clades 65% of the time. The results suggest the possibility of cryptic species, but additional molecular and morphological data are needed to confirm this. This study demonstrates the need to reevaluate the taxonomy of crinoid species and their respective diagnostic characters.  相似文献   

6.
The Fleet (southern England) is a stable (ca. 5,000 years) coastal saline lagoon that supports a population of Alcyonidium resembling the common coastal epiphyte, Alcyonidium gelatinosum (L.). A combination of morphological, reproductive, and ecological characters was used to compare lagoonal and non-lagoonal proximate populations. Comparisons revealed a difference in the timing of spawning, considered to be related to the temporally restricted availability of viable substrata within the lagoonal basin. Allochronous spawning and spatial separation together suggest that the lagoonal taxon is reproductively isolated. The two populations were further compared with seven other coastal populations of Alcyonidium using randomly amplified polymorphic DNA (RAPD) analysis. The results confirm the individuality of the lagoonal taxon but also a close relationship with three A. gelatinosum populations. We present and consider four hypotheses that may account for the presence of this genetically distinct taxon: (1) diversification within the Fleet; (2) colonisation from another lagoon; (3) non-indigenous species status; and (4) introduction by shipping or other anthropogenically mediated dispersal mechanism. Significant diversification on the time scale involved has been demonstrated for isolated freshwater environments and, therefore, is feasible within a saline lagoon. Hypothesis 1 and, to a lesser extent, hypothesis 2 are consistent with the recognition of individual lagoons as 'biogeographic' islands of importance for their unique or characteristic biodiversity. The study also represents the first example of concordant morphological, reproductive, and genetic diversification in a marine bryozoan.  相似文献   

7.
Allozyme data are presented for populations of the bresiliid shrimp Rimicaris exoculata from two hydrothermal vent fields, Trans-Atlantic Geotraverse (TAG) and Broken Spur, located along the Mid-Atlantic Ridge. These indicate that all morphotypes of R. exoculata examined, including those previously interpreted as representing separate species, are conspecific. Conversely, genetic identity between a single specimen of Chorocaris sp. and R. exoculata was high for intergeneric comparisons. Genetic variation in the populations of R. exoculata (H o =0.034 to 0.056) was in the lower range of that estimated for other vent organisms, but similar to values obtained for other species of caridean shrimps in previous genetic studies. F-statistics were used to examine the population structure of R. exoculata. Estimates of variance of allele frequencies among populations (F ST ) between TAG and Broken Spur were very low (mean F ST =0.001), indicating no significant genetic differentiation between these populations although they were separated by 370 km. The number of migrants per generation was estimated from F ST and by a private-alleles method, and indicates that migration between the two fields exceeds 100 individuals per generation. This may be because of efficient larval or adult migration or a combination of both. Estimates of the correlation between homologous alleles between individuals within local populations (F IS ) of R. exoculata were high at two enzyme loci and indicate a heterozygote deficiency which caused a significant deviation from genotype frequencies expected under Hardy-Weinberg conditions. This deficiency was caused by the occurrence of rare homozygous genotypes in small individuals. In large individuals, rare alleles decreased in frequency or disappeared completely. This is discussed in relation to previous genetic investigations on other vent and nonvent organisms.  相似文献   

8.
The chemical activators of feeding behaviour for coelenterates have been generally regarded as species specific. Recently, however, and English (North Sea) population of the sea anemone Diadumene (Haliplanella) luciae (Verrill) and an American (Californian) population of the same species were found to respond to different chemical activators. The results of further examination of this apparent anomaly show that a third population (from the English Channel, selected because of differences in colour variety and type of habitat from the North Sea population) shared the same activators as the other English population. There was no correlation between the identities of the feeding-behaviour activators and either the type of habitat or coloration of the three populations. Since the only physical factor shared by anemones with similar activators (i.e., the two English populations) was geographical, it is tentatively concluded that physiological races of D. luciae may be evolving, independently of morphological or differently coloured races, in different parts of the world.  相似文献   

9.
This paper reports data on 28 allozyme loci in wild and artificially reared sea bass (Dicentrarchus labrax) samples, originating from either coastal lagoon or marine sites in the Mediterranean Sea. F ST analysis (θ estimator) indicated strong genetic structuring among populations; around 34% of the overall genetic variation is due to interpopulation variation. Pairwise θ estimates showed that, on average, the degree of genetic structuring was much higher between marine populations than between samples from lagoons. Six polymorphic loci showed differences in allele frequencies between marine and lagoon samples. Multivariate analyses of individual allozymic profiles and of allele frequencies suggested that different arrays of genotypes prevail in lagoons compared to marine samples, particularly at those loci that, on the basis of previous acclimation experiments, had been implicated in adaptation to freshwater. On the other hand, variation at “neutral” allozyme loci reflects to a greater extent the geographic location of populations. Allozyme differentiation was also studied in a D. labrax population from the Portuguese coast. Average genetic distance between this population and the Mediterranean populations was quite high (Nei's D = 0.236) and calls into question the taxonomic status of the Portuguese population. Finally, genetic relationships between D. labrax and D. punctatus were evaluated. Average Nei's D was 0.648, revealing high genetic differentiation between the two species, even for two sympatric populations of these species in Egypt; thus gene flow was not indicated between species. Received: 24 October 1996 / Accepted: 27 November 1996  相似文献   

10.
Allozyme variation at six polymorphic loci was examined in foliose dictyoceratid sponges from isolated reefs in the western Coral Sea. Four major genetic groups corresponding to the species Phyllospongia lamellosa, P. alcicornis, Carterospongia flabellifera and Collospongia auris were examined. A further two rare morphotypes from individual reefs formed genetic outliers to the P. lamellosa group, and may represent further taxa related to P. lamellosa. Gene frequencies in individual reef populations were largely in Hardy-Weinberg equilibrium, suggesting that random mating occurred in local populations of all four common species. Genetic variability was high and observed heterozygosities within populations ranged from 0.13 to 0.40. All four taxa showed significant genetic differentiation among populations (F ST=0.05 to 0.36). Genetic distances (Nei's D) among populations within species ranged from 0 to 0.723 and increased with increasing geographical separation. There was evidence that genetic differentiation between populations to the north and to the south of the southern limit of the South Equatorial Current (SEC) divergence was greater than expected on the basis of their geographical separation. The SEC divergence may form a partial barrier to gene flow among populations of these ecologically important sponges on the submerged Queensland Plateau. Levels of migration among populations of three of the species was less than those required to prevent divergence of the populations through genetic drift (Nm<1). Restricted migration among populations may provide a mechanism to explain the occurrence of highly divergent populations of dictyoceratid sponges whose specific identity is not clear, and may allow them additionally to develop partial reproduction isolation from other populations.  相似文献   

11.
Lineus ruber and L. viridis are common intertidal heteronemerteans found on the coasts of northern Europe and the east coast of North America. The two species resemble each other morphologically and were synonymised for many years prior to being separated on the basis of larval development. In this study, specimens of L. ruber and L. viridis were collected from sites along the west and southwest coast of Britain, northern France and the east coast of North America. The external morphology and allele frequencies of isozymes of the two species were compared from all sites. The external morphology of L. ruber and L. viridis was similar but they could generally be separated by colour. Allele frequencies for up to 13 enzyme loci between sympatric populations of L. ruber and L. viridis indicated that these two species are genetically very different (Nei's genetic identity=0.090 to 0.083). Allele-frequency data also indicated the presence of a third genetic type occurring sympatrically with populations of both L. ruber and L. viridis on the coasts of Britain and France but not on the coast of North America. Fixed differences in allele frequencies between populations of the third genetic type and sympatric populations of L. ruber and L. viridis were observed across multiple loci. Genetic identity between the third genetic type and sympatric populations of L. ruber and L. viridis were extremely low (Nei's genetic identity =<0.078). Such large genetic differences between populations indicate a barrier to gene flow and reproductive isolation. The aberrant type, which exhibits sufficient morphological variation to prevent individuals being distinguished from those of both L. ruber and L. viridis, therefore represents a separate species. The low genetic identities found in intrageneric comparisons of species found in this study have been found in other studies on nemerteans. They may indicate systematic problems within these groups or other phenomena such as morphological stasis.  相似文献   

12.
The effect of photosynthetic available radiation (PAR) levels, light quality, ultraviolet (UV) radiation, and temperature on photosynthesis, growth, and chlorophyll fluorescence was evaluated in red and green morphotypes of the rhodophyte Kappaphycus alvarezii (Doty) Doty under controlled conditions. Chlorophyll a and phycoerythrin (PE) levels were similar in the red and green morphotypes cultured under the same conditions, but phycocyanin (PC) and allophycocyanin (APC) levels were 2-fold greater in the green than in the red morphotype. Pigment characterization indicated that the overexpression of PC and APC masked the red pigmentation in the green morphotype. Maximum photosynthesis and photosynthetic efficiency were similar between the two morphotypes assayed at a wide temperature range, which was reflected in the similar growth rates observed in outdoor culture systems. In the green morphotype, photosynthetic efficiency increased 2-fold relative to the red morphotype when assayed with red light (λ > 600 nm), indicating that photosynthetic characteristics are modified as a result of pigment variation in these morphotypes. Such increase in photosynthetic efficiency in the green morphotype, however, did not result in greater growth rates when cultured under white light. Short exposure to high levels of solar radiation (UV-A + UV-B + PAR), and filtered solar radiation (UV-A + PAR or PAR) decreased effective quantum yield (ΔF/F m′) in both morphotypes. The reduction of ΔF/F m′ values in the red and green morphotypes was accounted for by high levels of PAR and not by the UV-A + UV-B + PAR and UV-A + PAR treatments. Photoinhibition caused by UV-A, UV-B, or PAR was completely reversed within 30 h after incubations. Recovery rates from photoinhibition, however, were significantly reduced in the green morphotype when incubated with UV-B radiation. The results here suggest that the overexpression of pigments do not necessarily increase photosynthesis and growth in these morphotypes. Received: 19 June 2000 / Accepted: 28 November 2000  相似文献   

13.
Planktonic populations of the calanoid copepod Labidocera aestiva show significant biochemical genetic heterogeneity along the Atlantic coast of the USA. In summer, 1981, copepods were collected by surface tows at Beaufort Inlet, North Carolina; Fort Pierce Inlet, Florida; and Vineyard Sound, Massachusetts. Genetic variation within each population and genetic differentiation among the three populations were studied by micro-acrylamide gel electrophoresis of six loci encoding four enzymes. All six enzyme loci were polymorphic when all populations were considered together, but the North Carolina population was monomorphic at two loci. High genetic variability was indicated by the following: (1) the number of alleles per locus averaged over all loci was 2.57±0.26 SD; (2) the average proportion of loci for which the frequency of the most common allele was not greater than 0.95 was 0.78±0.10; (3) the frequency of heterozygous individuals was 0.25±0.07. Genetic differentiation among population samples in the three regions was demonstrated in several ways: allele frequencies at one aminopeptidase-I locus, Lap-1, differed significantly among samples of the three populations, and there were unique alleles of high frequency at this locus in two population samples. Values of the statistic of genetic distance (D) averaged 0.20±0.08 for pairwise comparisons between all samples. Compared to expected heterozygosity if individuals across the entire range sampled mated at random, there were highly significant heterozygote deficiencies at five of the six loci. Genetic differentiation of populations of L. aestiva may result from (1) differential selection on populations in the three regions, or (2) restricted gene flow between the populations. Gene flow may be limited by geographic separation or differences in life history, such as seasonal presence in the plankton and diapause egg production.Contribution No. 5810 of Woods Hole Oceanographic Institution  相似文献   

14.
We present the first case of hybridization between echinoid species evaluated through genetic markers and morphology. We examined the three tropical Indo-Pacific species of the genus Diadema: D. paucispinum A. Agassiz, D. savignyi (Audouin) Michelin and D. setosum (Leske). Specimens morphologically intermediate between two of these species, D. savignyi and D. setosumhave previously been noted. Fertile hybrids have also been produced in the laboratory. To determine extent of hybridization, we first assayed the allozyme products of 22 loci in individuals which, on the basis of morphology and collection locality, could be unambiguously assigned to one of the three species. We found four loci that were either diagnostic or semi-diagnostic between D. setosum and the other two species, and one locus semi-diagnostic between D. savignyi and D. paucispinum.We then assayed individuals of intermediate morphology to find out whether they had hybrid genotypes. In the Ryukyu Islands, where D. setosum and D. savignyi coexist, we found one specimen which on the basis of all four diagnostic loci was an F1 hybrid, and several individuals that could be either F2 (or later-generation) hybrids or progeny of backcrosses.We also found one individual that on both genetic and morphological grounds appeared to belong to D. paucispinum (even though this spcies has only been reported from Hawaii and Kiribati) and three other individuals that carried alleles characteristic of D. paucispinum. Thus, previous reports of hybridization between D. setosum and D. savignyi were correct; it is also possible that larvae of D. paucispinum occasionally arrive at localities outside Hawaii, reach sexual maturity, and hybridize with the other two species. Counts of pure and hybrid morphotypes in other populations across the western tropical Pacific revealed a low but widespread incidence of apparent F1 hybrids and backcrosses of D.savignyi and D. setosum. However, the existence of diagnostic or semi-diagnostic loci, low interspecific gene-flow estimates based on F st statistics, and the lack of Hardy-Weinberg or linkage disequilibria among individuals of pure morphology all suggest that gene introgression between the three species is limited.  相似文献   

15.
The taxonomic status of common dolphins (Delphinus sp.) remains controversial despite the increased number of studies focusing on its populations. Two species are presently recognized, Delphinus delphis and D. capensis. Apart from a phylogeographic study of the genus Delphinus, genetic studies focusing specifically in the northeast (NE) Atlantic remain scarce. Following ecological and morphological evidence for the existence of different common dolphin morphotypes in the Portuguese coast, we examined the population structure of D. delphis from the NE Atlantic by comparing DNA sequences from two mitochondrial regions (control region and cytochrome b gene). Additionally, we compared the sequences obtained with existing sequences of D. delphis from the Azores, Black Sea, Canary Islands, Pacific Ocean, D. capensis and also two closely related delphinid species (Stenella coeruleoalba and Tursiops truncatus). In the analysis of the NE Atlantic populations, we found evidence for the existence of some level of genetic differentiation. In the broader phylogenetic analysis, D. delphis and D. capensis did not show reciprocal monophyly and we found a group of highly divergent individuals. We discuss the possibility for the existence of two divergent lineages that have evolved independently, a separate subspecies or events of introgressive hybridization. These findings could have important implications on a taxonomic level, although further investigation based on a larger geographical scale and on nuclear loci information will certainly elucidate the origin of these highly divergent individuals.  相似文献   

16.
Sponges of three morphotypes of Suberites ficus (Johnston, 1842) were collected during February and March 1985 off the south-west of the Isle of Man, and were compared by using spicule size distributions and genetic allele frequencies of isozyme loci. The populations did not show any significant differences of spicule size or type, but could be easily differentiated into three separate species based on isozyme patterns. Samples of pale orange S. ficus growing on gastropod shells inhabited by hermit crabs (Pagurus spp.) were reproductively isolated from the redorange and the pale yellow colour morphs encrusting the bivalve Chlamys opercularis. These latter two colour morphs were genetically similar, but significant differences were observed at two of the 19 gene loci assayed. All the sponges studied were sympatric, and therefore the genetic differences, indicating reproductive isolation, are strong evidence for separate gene pools and, hence, that they are different species. The genetic identity between the two colour morphs of S. ficus on C. opercularis shells was 0.977, whilst between each of these and S. ficus on hermit crabs it was about 0.65. In all three species genetic variability was high, with mean expected and observed heterozygosity values per locus ranging from 0.17 to 0.36.  相似文献   

17.
Five polymorphic microsatellite loci were developed and then used to assess the population genetic structure of a commercially harvested merobenthic octopus species (Octopus maorum) in south-east Australian and New Zealand (NZ) waters. Beak and stylet morphometrics were also used to assess population differentiation in conjunction with the genetic data. Genetic variation across all loci and all sampled populations was very high (mean number alleles = 15, mean expected heterozygosity = 0.85). Microsatellites revealed significant genetic structuring (overall F ST = 0.024, p < 0.001), which did not fit an isolation-by-distance model of population differentiation. Divergence was observed between Australian and NZ populations, between South Australia and north-east Tasmania, and between two relatively proximate Tasmanian sites. South Australian and southern Tasmanian populations were genetically homogeneous, indicating a level of connectivity on a scale of 1,500 km. Morphometric data also indicated significant differences between Australian and NZ populations. The patterns of population structuring identified can be explained largely in relation to regional oceanographic features.  相似文献   

18.
 We describe three highly polymorphic microsatellite loci which have been isolated from the giant tiger prawn Penaeus monodon. The number of alleles present among 312 samples at the loci Pmo9, Pmo25 and Pmo27 were 84, 34 and 35, respectively, with heterozygosities all >90%. Analyses of the distribution of length variation at three microsatellite loci among five Australian P. monodon populations revealed strong differentiation between populations from the west and those from the northern and eastern coasts. Tests for population differentiation (F st) values and an analogous measure for microsatellite loci (R st) all demonstrated that Western Australian P. monodon are a separate genetic stock which exhibits reduced genetic variation relative to the other populations. Reduced variability is consistent with a recent population bottleneck or colonization by a small founding population from the east when sea links between Indonesia, New Guinea and Australia were re-established following the last ice age. The results of this study are in agreement with previous surveys of P. monodon conducted with allozymes and mtDNA. Received: 18 December 1998 / Accepted: 27 August 1999  相似文献   

19.
Starch-gel electrophoresis was used to study gene-enzyme variation in thirteen populations of eight species of the genus Trapezia from Hawaii, Panamá, and Enewetak Atoll (Marshall Islands). Between 20 and 30 (mean = 27.8) gene-enzyme systems were resolved in each population, with 20 systems in common among all populations. The distribution of electrophenotypes was in agreement with Hardy-Weinberg-Castle expectations, except for T. digitalis, which consistently showed heterozygote deficiencies. Diagnostic loci among color forms support the hypothesis that color forms are distinct species. Low values of genetic distance among species suggest a recent radiation, perhaps during the Pleistocene. Genetic distance between the Hawaiian and Panamanian populations of T. ferruginea did not significantly differ from zero, indicating that the Eastern Pacific population of T. ferruginea has recently immigrated from the central Pacific, and/or that there is gene flow between the two areas. There were diagnostic loci between T. ferruginea and T. formosa from Enewetak and the populations of these species from Hawaii (T. ferruginea only) and Panamá (both species). Therefore, these geographic populations may represent separate species. The level and pattern of genetic variability in Trapezia spp. are in agreement with those observed in most other organisms.  相似文献   

20.
The extent to which genetic divergence can occur in the absence of physical barriers to gene flow is currently one of the most controversial topics in evolutionary biology, with implications for our understanding of speciation, phenotypic plasticity and adaptive potential. This is illustrated by a recent study reporting a surprising pattern of genetic differentiation between intertidal and subtidal morphotypes of the broadcast-spawning Antarctic limpet Nacella concinna. To explore this further, we collected almost 400 Antarctic limpets from four depths (intertidal, 6, 15 and 25 m) at Adelaide island, Antarctica, and conducted a combined morphometric and genetic analysis using 168 polymorphic amplified fragment length polymorphism (AFLP) loci. Morphological analysis revealed not only pronounced differences between the two morphotypes, but also a continuous cline in shell shape from the intertidal zone down to 25 m depth, suggesting that the distinction between the morphotypes may be artificial. Moreover, genetic analysis using both F st and a Bayesian analogue found no evidence for differentiation either between the two morphotypes or by depth, and a Bayesian cluster analysis did not detect any cryptic genetic structure. Our findings lend support to the notion that limpets can be phenotypically highly plastic, although further studies are required to determine unequivocally whether there is any genetic basis to the observed variation in shell morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号