首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Understanding the responses of tundra systems to global change has global implications. Most tundra regions lack sustained environmental monitoring and one of the only ways to document multi-decadal change is to resample historic research sites. The International Polar Year (IPY) provided a unique opportunity for such research through the Back to the Future (BTF) project (IPY project #512). This article synthesizes the results from 13 papers within this Ambio Special Issue. Abiotic changes include glacial recession in the Altai Mountains, Russia; increased snow depth and hardness, permafrost warming, and increased growing season length in sub-arctic Sweden; drying of ponds in Greenland; increased nutrient availability in Alaskan tundra ponds, and warming at most locations studied. Biotic changes ranged from relatively minor plant community change at two sites in Greenland to moderate change in the Yukon, and to dramatic increases in shrub and tree density on Herschel Island, and in subarctic Sweden. The population of geese tripled at one site in northeast Greenland where biomass in non-grazed plots doubled. A model parameterized using results from a BTF study forecasts substantial declines in all snowbeds and increases in shrub tundra on Niwot Ridge, Colorado over the next century. In general, results support and provide improved capacities for validating experimental manipulation, remote sensing, and modeling studies.  相似文献   

2.
A unique long term, 49-year record (divided into three time periods 1961–1976, 1977–1992, and 1993–2009) of snow profile stratigraphy from the Swedish sub Arctic, was analyzed with a focus on changes in snow characteristics. The data set contained grain size, snow layer hardness, grain compactness, and snow layer dryness, observed every second week during the winter season. The results showed an increase in very hard snow layers, with harder snow in early winter and more moist snow during spring. There was a striking increase in the number of observations with very hard snow at ground level over time. More than twice as many occasions with hard snow at ground level were observed between 1993 and 2009 compared to previous years, which may have a significant effect on plants and animals. The changes in snow characteristics are most likely a result of the increasing temperatures during the start and the end of the snow season.  相似文献   

3.
Daniëls FJ  de Molenaar JG 《Ambio》2011,40(6):650-659
The changes in the vascular plant flora of Tasiilaq, low arctic Southeast Greenland, between around 1900 and 2007 were studied by comparing the data from historical literature with those of the field observations performed between the late 1960s and 2007. Since 1900, the percentage of widely distributed arctic species distinctly decreased, whereas that of the low arctic species somewhat increased, and boreal species hardly increased. Vegetation monitoring revealed minor changes and showed that several thermophilous and xerophilous species increased between 1968/1969 and 2007, whereas some hygrophilous species decreased. Repeated vegetation mapping of a shallow pond revealed conspicuous changes suggesting increased evaporation/precipitation ratios associated with environmental warming up and decreasing snow accumulation in winter, in line with results of previous investigations. In spite of climate warming, expansion of the town and increasing human impact, flora and vegetation on the whole appeared rather stable during the last 40 years without invading species or introductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号