首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Samples of river water and treated drinking water were obtained from eight sites along the Potomac River between western Maryland and Washington DC. Samples were collected each month from October 2007 to September 2008 and analyzed for perchlorate by ion chromatography/mass spectrometry. Data on anions were also collected for seven of the twelve months. Data were analyzed to identify spatial and temporal patterns for the occurrence of perchlorate in the Potomac. Over the year of sampling, the largest monthly increase occurred from June to July, with levels then decreasing from July to September. Samples from the period between December and May had lower perchlorate concentrations, relative to the remainder of the study year. Spatially, higher levels of perchlorate were found at sites located in west-central Maryland, the eastern panhandle of West Virginia, and central northern Virginia, with levels decreasing slightly as the Potomac approaches Washington DC. Within the sampling boundaries, river (untreated) water perchlorate concentrations ranged from 0.03 μg L(-1) to 7.63 μg L(-1), averaged 0.67 ± 0.97 μg L(-1) over the year-long period and had a median value of 0.37 μg L(-1). There was no evidence that any of the existing drinking water treatment technologies at the sampling sites were effective in removing perchlorate. There were no correlations found between the presence of perchlorate and any of the anions or water quality parameters examined in the source water with the exception of a weak positive correlation with water temperature. Results from the summer (June-August) and fall (September-November) months sampled in this study were generally higher than from the winter and spring months (December-May). All but one of the locations had annual average perchlorate levels below 1 μg L(-1); however, 7 of the 8 sites sampled had river water perchlorate detections over 1 μg L(-1) and 5 of the 8 sites had treated water detections over this level.  相似文献   

2.
Many potable water disinfection byproducts (DBPs) that result from the reaction of natural organic matter (NOM) with oxidizing chlorine are known or suspected to be carcinogenic and mutagenic. The Ames assay is routinely used to assess an overall level of mutagenicity for all compounds in samples from potable water supplies or laboratory studies of DBP formation. Reduction of oxidizing disinfectants is required since these compounds can kill the bacteria or react with the agar, producing chlorinated byproducts. When mutagens are collected by passing potable water through adsorbing resins, active chlorine compounds react with the resin, producing undesirable mutagenic artifacts. The bioanalytical and chemoanalytical needs of drinking water DBP studies required a suitable reductant. Many of the candidate compounds failed to meet those needs, including 2,4-hexadienoic (sorbic) acid, 2,4-pentanedione (acetylacetone), 2-butenoic (crotonic) acid, 2-butenedioic (maleic and fumaric) acids and buten-2-ol (crotyl alcohol). Candidates were rejected if they (1) reacted too slowly with active chlorine, (2) formed mutagenic byproducts, or (3) interfered in the quantitation of known chlorination DBPs. L-Ascorbic acid reacts rapidly and stoichiometrically with active chlorine and has limited interactions with halogenated DBPs. In this work, we found no interference from L-ascorbic acid or its oxidation product (dehydroascorbic acid) in mutagenicity assays of chlorinated NOM using Salmonella typhimurium TA100, with or without metabolic activation (S9). This was demonstrated for both aqueous solutions of chlorinated NOM and concentrates derived from the involatile, ether-extractable chlorinated byproducts of those solutions.  相似文献   

3.
Disinfection by-product formation potentials (DBPFPs) in wastewater effluents from eight wastewater treatment plants (WWTPs) were investigated. In addition, a WWTP with one primary effluent and two different biological treatment processes was selected for a comparative study. Formation potential tests were carried out to determine the levels of DBP precursors in wastewater. WWTPs that achieved better organic matter removal and nitrification tended to result in lower DBPFPs in effluents. For the WWTP with two processes, haloacetic acid, trihalomethane, and chloral hydrate precursors were predominant DBP precursors in the primary and secondary effluents. The percent reductions of haloacetonitrile and haloketone formation potentials averaged at 96% which was high in comparison to the reductions of other classes of DBPFPs. In addition, biological treatment changed the DBPFP speciation profile by lowering the HAAFP/THMFP ratio. The eight plant survey and the comparative analysis of the WWTP with two processes implied that besides nitrification, there may be other confounding factors impacting DBPFPs. Oxic and anoxic conditions, formation and degradation of soluble microbial products had impacts on the DBPFP reductions. This information can be used by water and wastewater professionals to better control wastewater-derived DBPs in downstream potable water supplies.  相似文献   

4.
For some utilities, new US drinking water regulations may require the removal of disinfection byproduct (DBP) precursor material as a means of minimizing DBP formation. The Environmental Protection Agency's Stage 1 DBP Rule relies on total organic carbon (TOC) concentrations as a measure of the effectiveness of treatment techniques for removing organic material that could act as DBP precursors. Accordingly, precise and accurate methods are needed for the determination of TOC and dissolved organic carbon (DOC) concentrations in raw and finished potable water supplies. This review describes the current analytical technologies and summarizes the key factors affecting measurement quality. It provides a look into the fundamental principles and workings of TOC analyzers. Current peroxydisulfuric acid wet ashing methods and combustion methods are discussed. Issues affecting quality control, such as non-zero blanks and preservation, are covered. Some of the difficulties in analyzing water for TOC and DOC that were identified up to 20 years ago still remain problematic today. Limitations in technology, reagent purity, operator skill and knowledge of natural organic matter (NOM) can preclude the level of precision and accuracy desirable for compliance monitoring.  相似文献   

5.
Four different potable water types: tap water, desalinated water in private plants, homes filtrated and sealed bottled water were collected from four provinces in Jordan and analyzed for various physiochemical parameters and trace metals content. The results showed that quality of potable water varied depending on many factors such as: water quality at source, types of purification system, and the storage methods. None of the analysed parameters exceeded the national and international guideline for potable water except Nickel (Ni). The maximum concentration of Ni was found in tap water which can be attributed as network distribution system and metal storage tanks influences. The highest levels of salinity was evident in tap water. Potable water produced at homes using different types of purification systems indicated lowest levels of salinity. Minor variations in physiochemical parameters and trace metal contents were found between local and imported bottled water brands.  相似文献   

6.
This work presents the results of a 4-year study on sulfur dioxide (SO(2)) ground-level concentrations in an area of southeastern Spain, the L'Alacantí region, where the cement industry is important and coke use extends to other industries as well. The main source of SO(2) emissions in the area was found to be a the Lepold cement plant (one of the two cement plants in the area). The high levels of SO(2) probably extend back to 1920 when this plant began operations. Both local and Mediterranean-scale meteorological processes influence the SO(2) ground-level concentration and together explain the dispersion dynamics of this pollutant. The location and topography of the study zone result in NW Atlantic advections and E-SE sea breezes being the dominant atmospheric circulation patterns in the area. Under stable meteorological conditions, minor local circulations are also relevant to the SO(2) concentration levels. The high frequency of local circulations determines a concentration pattern that changes during the day, with impacts occurring preferentially in a W-NW direction from the source at midday (sea breeze and strong thermal mixture), and in a SE direction at night. This causes the SO(2) concentrations to present well-defined diurnal cycles with well-differentiated shapes depending on the location of the sampling station relative to the source. The dependence of SO(2) 10 min levels on the wind origin and speed throughout the day has been evaluated by studying statistical parameters including P95, P50 and arithmetic mean. Exceedances occur under specific dispersion conditions at distances less than 1 km from the source. However, the source is traceable at larger distances and the levels are higher than typical urban ones. P95 was used as an estimator of the occurrence of larger levels or impacts. Leeward of NW winds and the source, at night and in early morning, P95 levels are comprised between 30 and 55 μg m(-3). In contrast, with SE winds and at midday, P95 levels stay at 17 μg m(-3). The same P95 was obtained for winds lower than 5 m s(-1), which represent 89% of the winds in the area. However, stronger winds can have P95 levels above 125 μg m(-3).  相似文献   

7.
应用电感耦合等离子体质谱法测定饮用水中的硒元素。结果表明,高能碰撞模式(HEHe)较碰撞/反应池气体模式(He模式)消除干扰效果更好;在HEHe模式下,~(78)Se在0.5~100μg/L范围内线性良好,相关系数0.999 9,方法检出限为0.06μg/L,相对标准偏差为0.4%~0.8%,加标回收率为97.1%~103.2%。方法性能指标均能较好满足饮用水中Se的定量测试要求。  相似文献   

8.
Free chlorine has been used extensively as a primary and secondary disinfectant for potable water. Where it is difficult to maintain a free chlorine residual or when disinfection by-products (DBPs) are of concern, monochloramine has been used to provide a stable disinfectant residual in distributions systems. Reactions of disinfectants, free chlorine or monochloramine, with natural organic matter (NOM) consequently result in the formation of DBPs such as trihalomethanes and haloacetic acids. However, few studies have focused on the fate and kinetics of monochloramine loss in the presence of reactive constituents such as NOM. Monochloramine is inherently unstable and decays even without reactive constituents present via a mechanism known as autodecomposition. Therefore, to predict monochloramine concentrations in the presence of NOM is clearly associated with the ability to adequately model autodecomposition. This study presents the results of a semi-mechanisiic model capable of predicting the loss of monochloramine in the presence of humic material in the pH range of 6.55-8.33. The model accounts for both fast and a slow monochloramine demand to explain the loss of monochloramine over the pH range of this study. The formation of dichloroacetic acid was also predicted due to the ability of the model to differentiate monochloramine reaction pathways in the presence NOM. The results shown here demonstrate the ability of a semi-mechanistic model to predict monochloramine residuals and DBP formation in the presence of humic material.  相似文献   

9.
This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.  相似文献   

10.
A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 μm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 μg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 μg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.  相似文献   

11.
The phosphate concentration in mountainous stream water can be a measure of the forest condition, because its concentration will be low when the biomass in the forest is increasing and vice versa when the forest is declining. To investigate the seasonal change in the dissolved phosphate concentration of the mountainous stream water of the Yamakami River, Kitakyushu, from June 2009 to August 2010, and the regulation mechanism of the phosphate concentration, solid-phase spectrophotometry, which can be applicable to natural water without any pretreatment procedures, was employed for the determination of phosphate at μg P L(-1) levels in natural water. The phosphate concentrations in the mountainous stream waters at 6 sites ranged from 2.2 to 13 μg P L(-1), and those from the catchment area of the steady state forest were 5.3 ± 1.6 (±1 SD) μg P L(-1). Changes in the concentration were fairly small even during a storm runoff. The average phosphate concentration of rain was 2.8 ± 0.7 μg P L(-1), about half of the concentration in the stream water. The rate of runoff in forest areas is generally considered to be about 50% of the total precipitation. For a forest under a climax condition, the phosphate concentration is estimated to be regulated by the fallout and evapotranspiration (α = 0.05). At one of the sites, an upstream tributary, where a fairly big landslide occurred before July in 2009, the phosphate concentration was the highest, suggesting that the biomass may still be decreasing. For all of the six sites examined, a characteristic seasonal change in phosphate concentration was observed, reflecting the local budget between the biological decomposition of plant matter and the consumption by the biomass. The increase in the phosphate concentration during late spring and early summer may result from the extensive decomposition of plant litter mainly supplied in autumn and of plant matter relating to spring blooming such as fallen flowers, pollen and immature fruits. The proposed method using the phosphate concentration in surface stream waters without the period of the seasonal change mentioned above is expected to be very helpful in diagnosing the condition of forests.  相似文献   

12.
This article presents the geochemical characteristics and physicochemical properties of water and sediment from twelve semi-permanent, dryland pools in the upper Leichhardt River catchment, north-west Queensland, Australia. The pools were examined to better understand the quality of sediments and temporary waters in a dryland system with a well-established metal contamination problem. Water and sediment sampling was conducted at the beginning of the hydroperiod in May and September 2007. Water samples were analyzed for major solute compositions (Ca, Na, K, Mg, Cl, SO(4), HCO(3)) and water-soluble (operationally defined as the <0.45 μm fraction) metals (Cd, Cu, Pb, Zn). Sediment samples were analyzed for total extractable and bioaccessible metals (As, Cd, Cu, Pb, Zn), elemental composition and grain morphology. At the time of sampling a number of pools contained water and sediment with elevated concentrations, compared to Australian regulatory guidelines, of Cu (maximum: water 28 μg L(-1); sediment 770 mg kg(-1)), Pb (maximum: water 3.4 μg L(-1); sediment 630 mg kg(-1)) and Zn (maximum: water 150 μg L(-1); sediment 780 mg kg(-1)). Concentrations of Cd and As in pools were relatively low and generally within Australian regulatory guideline values. Localized factors, such as the interaction of waters with anthropogenic contaminants from modern and historic mine wastes (i.e. residual smelter and slag materials), exert influence on the quality of pool waters. Although the pools of the upper Leichhardt River catchment are contaminated, they do not appear to be the primary repository of water and sediment associated metals when compared to materials in the remainder channel and floodplain. Nevertheless, a precautionary approach should be adopted to mitigating human exposure to contaminated environments, which might include the installation of appropriate warning signs by local health and environmental authorities.  相似文献   

13.
In the United States, the newly promulgateddisinfectant/disinfection by-product (D/DBP) regulationsforce water treatment utilities to be more concerned withfinished and distributed water qualities. In this study,monitoring of DBP formation was conducted from three Frenchwater treatment plants trying to assess DBP variationsthrough time and space. Compared to the in-plant totaltrihalomethanes (TTHM) levels, TTHM levels in thedistribution system increased from less than 150% to morethan 300%. Significant variations for TTHM and bromate(BrO3 -) levels throughout the seasons were alsoobserved; generally higher levels in the summer and lowerlevels in the winter. Combining chemical DBP models(empirical power functional models) and hydraulicsimulations, DBPs including TTHM and BrO3 - weresuccessfully simulated from the full-scale monitoring data,indicating that empirical DBP model can be a potential toolto access DBP formation in actual plants. This study alsoprovides the protocols to assess DBP simulations in thewater treatment systems.  相似文献   

14.
This complex study presents indoor and outdoor levels of air-borne fine particles, particle-bound PAHs and VOCs at two urban locations in the city of Kaunas, Lithuania, and considers possible sources of pollution. Two sampling campaigns were performed in January-February and March-April 2009. The mean outdoor PM(2.5) concentration at Location 1 in winter was 34.5 ± 15.2 μg m(-3) while in spring it was 24.7 ± 12.2 μg m(-3); at Location 2 the corresponding values were 36.7 ± 21.7 and 22.4 ± 19.4 μg m(-3), respectively. In general there was little difference between the PM concentrations at Locations 1 and 2. PM(2.5) concentrations were lower during the spring sampling campaign. These PM concentrations were similar to those in many other European cities; however, the levels of most PAHs analysed were notably higher. The mean sum PAH concentrations at Locations 1 and 2 in the winter campaign were 75.1 ± 32.7 and 32.7 ± 11.8 ng m(-3), respectively. These differences are greater than expected from the difference in traffic intensity at the two sites, suggesting that there is another significant source of PAH emissions at Location 1 in addition to the traffic. The low observed indoor/outdoor (I/O) ratios indicate that PAH emissions at the locations studied arise primarily from outdoor sources. The buildings at both locations have old windows with wooden frames that are fairly permissive in terms of air circulation. VOC concentrations were mostly low and comparable to those reported from Sweden. The mean outdoor concentrations of VOC's were: 0.7 ± 0.2, 3.0 ± 0.8, 0.5 ± 0.2, 3.5 ± 0.3, and 0.2 ± 0.1 μg m(-3), for benzene, toluene, ethylbenzene, sum of m-, p-, o-xylenes, and naphthalene, respectively. Higher concentrations of VOCs were observed during the winter campaign, possibly due to slower dispersion, slower chemical transformations and/or the lengthy "cold start" period required by vehicles in the wintertime. A trajectory analysis showed that air masses coming from Eastern Europe carried significantly higher levels of PM(2.5) compared to masses from other regions, but the PAHs within the PM(2.5) are of local origin. It has been suggested that street dust, widely used for winter sanding activities in Eastern and Central European countries, may act not only as a source of PM, but also as source of particle-bound PAHs. Other potential sources include vehicle exhaust, domestic heating and long-range transport.  相似文献   

15.
Exposure to various chemicals can cause adverse effects to health, such as asthma and allergies, especially in children. Data on personal exposure levels in children are scarce, thus small lightweight diffusive mini-samplers for aldehydes and volatile organic compounds (VOCs) were designed to measure the exposure level of children to these chemicals. The aim of the study was to validate and examine the applicability of these mini-samplers for measuring daily chemical exposure. The diffusive mini-samplers are 20 mm in length, 11 mm in diameter, and 1.67 g in weight. The devices are cylindrically shaped with polytetrafluoroethylene membrane filters placed at each end. To measure aldehydes and acetone, 20 mg of 2,4-dinitrophenylhydrazine was used as an absorbent. To measure VOCs, a carbon molecular sieve was used. The sampling rate for each chemical was determined by parallel sampling with active samplers in a closed exposure bag. The blank levels of the chemicals and the storage stability of the device were tested. The mini-samplers were compared to commercially available diffusive samplers. To examine the applicability of the samplers, 65 elementary school children carried them for 24 h. The sampling rates for formaldehyde, acetaldehyde, and acetone were 20.9, 22.9, and 19.7 mL min(-1), respectively. The limits of quantification (LOQ) for the 24-hour sampling by high-performance liquid chromatography/ultraviolet (HPLC/UV) analysis were 8.3, 7.6, and 8.8 μg m(-3) for formaldehyde, acetaldehyde, and acetone, respectively. The sampling rates for the 11 VOCs were determined and ranged from 3.3 mL min(-1) for styrene and 2-ethyl-1-hexanol to 11.7 mL min(-1) for benzene. The LOQ for the 24-hour sampling by gas chromatography-mass spectrometry (GC-MS) analysis ranged from 5.9-105.2 μg m(-3), 1.1-24.7 parts per billion. The storage stability after 5 days ranged from 94.8 to 118.2%. Formaldehyde, acetone, benzene, and toluene were detected above the LOQ in more than 90% of the children, and the median concentrations were 21.7, 20.9, 10.1, and 21.5 μg m(-3), respectively. This study shows that the diffusive samplers developed were suitable for children to carry and were capable of measuring the children's daily chemical exposure.  相似文献   

16.
The purpose of this study was to investigate the potential risk of pretilachlor, thiobencarb, and propanil pollutants in the water system of the rice fields of the Muda area. The study included two areas that used different irrigation systems namely non-recycled (N-RCL) and recycled (RCL) water. Regular water sampling was carried out at the drainage canals during the weeding period from September to October 2006 in the main season of 2006/2007 and April-May 2007 in off season of 2007. The herbicides were extracted by the solid-phase extraction method and identified using a GC-ECD. Results showed that the procedure for identification of the three herbicides was acceptable based on the recovery test values, which ranged from 84.1% to 96.9%. A wide distribution pattern where more than 79% of the water samples contained the herbicide pollutants was observed at both the areas where N-RCL and RCL water was supplied for the two seasons. During September to October 2006, high weedicide residue concentration was observed at the N-RCL area and it ranged from 0.05 to 1.00 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. In the case of the area with RCL water, the weedicide residue ranged from 1 to 5 μg/L for pretilachlor and propanil and 10-25 μg/L for thiobencarb. The highest residue level reached was 25-50, 50-100, and 100-200 μg/L for pretilachlor, propanil, and thiobencarb, respectively. During April to May 2007, high residue concentration frequently occurred at the area supplied with N-RCL irrigation water and it ranged from 0.05 to 1.00, 10 to 25, and 25 to 50 μg/L for pretilachlor, propanil, and thiobencarb, respectively. The highest residue level reached was 25-50 μg/L for pretilachlor and 100-200 μg/L for propanil and thiobencarb. There was an accelerated increase in the concentration of the herbicide residues, with the maximum levels reached at the early period of weedicide application, followed by a sharp decrease after the rice fields were completely covered with the rice crop. During the main season of 2006/2007, the concentration of propanil residue gradually rose, although that of the other herbicides declined.  相似文献   

17.
Haloethanoic (haloacetic) acids (HAAs) are formed as disinfection byproducts (DBPs) during the chlorination of natural water to make it fit for consumption. Sundry analytical techniques have been applied in order to determine the concentrations of the HAAs in potable water supplies: gas chromatography (GC-MS, GC-ECD); capillary electrophoresis (CE); liquid chromatography (LC), including ion chromatography (IC); and electrospray ionization mass spectrometry (ESI-MS). Detection limits required to analyze potable water samples can be regularly achieved only by GC-ECD and ESI-MS. Without improvements in preconcentration or detector sensitivity, CE and LC will not find application to potable water supplies. The predominant GC-ECD methods use either diazomethane or acidified methanol to esterify (methylate) the carboxylic acid moiety. For HAA5 analytes, regulated under the EPA's Stage 1 DBP Rule, diazomethane is satisfactory. For HAA9 data gathered under the Information Collection Rule, acidified methanol outperforms diazomethane, which suffers from photo-promoted side reactions, especially for the brominated trihaloacetic acids. Although ESI-MS can meet sensitivity and selectivity requirements, limited instrumentation availability means this technique will not be widely used for the time being. However, ESI-MS can provide valuable confirmatory information when coupled with GC-ECD in a research setting.  相似文献   

18.
Six hundred and sixty-seven water samples were collected from public drinking water supplies in Sicily and analysed for electric conductivity and for their Cl(-), Br(-) and F(-) contents. The samples were, as far as possible, collected evenly over the entire territory with an average sampling density of about one sample for every 7,600 inhabitants. The contents of Cl(-) and Br(-), ranging between 5.53 and 1,302 mg/l and between <0.025 and 4.76 mg/l respectively, correlated well with the electric conductivity, a parameter used as a proxy for water salinity. The highest values were found both along the NW and SE coasts, which we attributed to seawater contamination, and in the central part of Sicily, which we attributed to evaporitic rock dissolution. The fluoride concentrations ranged from 0.023 to 3.28 mg/l, while the highest values (only three exceeding the maximum admissible concentration of 1.5 mg/l) generally correlated either with the presence in the area of crystalline (volcanic or metamorphic) or evaporitic rocks or with contamination from hydrothermal activity. Apart from these limited cases of exceeding F(-) levels, the waters of public drinking water supplies in Sicily can be considered safe for human consumption for the analysed parameters. Some limited concern could arise from the intake of bromide-rich waters (about 3% exceeding 1 mg/l) because of the potential formation of dangerous disinfection by-products.  相似文献   

19.
Occurrence of halogenated disinfection by-products (DBPs) (trihalomethanes –THMs– and haloacetic acids –HAAs–) in the waters of two utilities in Quebec City (Canada) was investigated using two approaches: experimental chlorination studies and full-scale sampling within distribution systems. Experimental studies were designed to reproduce treatment plant and distribution system conditions (chlorine dose, water temperature, pH and water residence time). Differences in halogenated DBPs in the two distribution systems under study were significant and comparable to those observed in experimental laboratory studies. For the waters of both utilities, chlorination studies better reproduced the occurrence of halogenated DBPs in points of the distribution system located near the treatment plant (low residence time of water) than in other points. Multivariate regression models for THMs, HAAs and their species were developed using the data from experimental studies in order to predict halogenated DBP levels measured in the distribution system. Models were all statistically significant, but showed low ability to predict full-scale halogenated DBPs, particularly in points located at distribution system extremities. Specifically, experimental chlorination-based models are not able to simulate the decrease of HAA levels. Results of this research suggest that the use of experimental data to predict halogenated DBP levels in full-scale distribution systems – for operational, regulatory and epidemiological purposes – must be done with caution.  相似文献   

20.
Persistent organic pollutants (POPs) such as chlorinated pesticides are of global concern due to their widespread occurrence, persistence, bioaccumulation and toxicity to animals and human. This paper summarises recent research on 18 chlorinated pesticides in an important catchment in China, by determining their concentrations and behaviour in water, sediment, soil and plants. The concentrations of the total pesticides were in the ranges 187-893 ng l(-1) in river water, 8.53-210 ng g(-1) dry weight in soil, 2.66-13.45 ng g(-1) dry weight in river sediment, and 651-2823 ng g(-1) dry weight in plants. The predominance of beta-HCH as the major isomer of HCHs in all water, soil, sediment and plant samples was clearly observed, due to beta-HCH's resistance to biodegradation. On average beta-HCH accounted for 44%, 53%, 50%, and 46% of the total HCH concentration in water, soil, sediment and plant, respectively. Of the DDTs, DDE accounted for 48%, 43%, 53%, 55% of the total DDT, which suggested that DDT had been transformed to its metabolites, DDE and DDD, of which DDE was the more stable. The chlorinated pesticide levels in the River Wuchuan were generally below the guideline values in China, but some sites displayed levels in excess of EC Environmental Quality Standards for HCHs and DDTs. The results therefore provide important information on the current contamination status of a key agricultural watershed in China, and point to the need for urgent actions to evaluate the long-term fate and toxicity of such persistent compounds and an appropriate remediation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号