首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
DO和pH值在短程硝化中的作用   总被引:16,自引:0,他引:16  
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用。本试验条件下。当DO为0.5~1.0mg/L、pH值为7.5—8.0时。在SBR反应器中很容易实现短程硝化;当DO〉0.3mg/L时,DO越低,出水NO2^-N积累率越高;当pH值〉6.8时,不会影响系统NO2^-N积累的稳定性。另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化。本试验条件下,当进水氨氮浓度为120mg/L时,控制DO为0.3—0.4mg/L可实现出水半亚硝化;当进水氨氮浓度为200mg/L时,控制DO为0.5—0.6mg/L或pH值为6.8也可以实现出水半亚硝化。  相似文献   

2.
实时控制SBR系统中的短程硝化反硝化   总被引:3,自引:1,他引:2  
以人工模拟高氨氮废水为研究对象,采用循环间歇式曝气方式,以溶解氧浓度(DO)和pH值为过程控制参数,对SBR系统进行实时控制、全程跟踪.根据此过程中COD、NH4 -N、NO2--N和NO3--N 4项水质指标的变化情况,研究SBR系统中的短程硝化反硝化工艺.实验结果表明,在短程硝化反硝化工艺中,采用较高曝气量,并且在曝气过程中用DO和pH值作为过程控制参数是可行的.  相似文献   

3.
SBR快速实现短程硝化及影响因素   总被引:5,自引:0,他引:5  
张立成  党维  徐浩  李捷  隋军 《环境工程学报》2015,9(5):2272-2276
基于建立的序批式反应器(SBR),探索实现城市生活污水短程硝化的主要控制因素。研究结果表明,废水温度维持在(30±1)℃、pH值为7.8~8.2的条件下,采用间歇曝气的运行方式,仅驯化培养29 d,成功实现短程硝化,亚硝氮积累率为95%左右。通过对比发现,间歇曝气方式优于连续曝气方式,间歇曝气能有效地将溶解氧(DO)浓度控制在1.0 mg/L以下,从而有利于进行短程硝化反应。此外,温度和pH可以影响亚硝氮的积累效果;当温度在25~35℃、进水pH为7.8~8.2时,亚硝氮的积累情况较好,积累率在91%以上。  相似文献   

4.
在SBR反应器中对DO和pH值在短程硝化和半亚硝化过程中的作用进行试验研究,结果表明,控制低DO和适宜的pH值在短程硝化过程中起着重要的作用.本试验条件下,当DO为0.5~1.0 mg/L、pH值为7.5~8.0时,在SBR反应器中很容易实现短程硝化;当DO>0.3 mg/L时,DO越低,出水NO2--N积累率越高;当pH值>6.8时,不会影响系统NO2--N积累的稳定性.另外,研究结果还表明,通过控制DO和pH值可以实现半亚硝化.本试验条件下,当进水氨氮浓度为120 mg/L时,控制DO为0.3~0.4 mg/L可实现出水半亚硝化;当进水氨氮浓度为200 mg/L时,控制DO为0.5~0.6 mg/L或pH值为6.8也可以实现出水半亚硝化.  相似文献   

5.
DO对好氧颗粒污泥短程同步硝化反硝化脱氮的影响   总被引:8,自引:2,他引:6  
以模拟城市污水为处理对象,研究了不同溶解氧下序批式活性污泥反应器(SBR)的短程同步硝化反硝化过程特征及处理效果。试验结果表明,溶解氧浓度是实现短程同步硝化反硝化的一个重要控制参数。在亚氮积累阶段,控制温度为28~32℃,pH值为7.5~7.8,当进水NH+4-N为30 mg/L左右,COD为250 mg/L左右时,亚硝酸盐氮的积累率达到96%~98%。在试验阶段,常温下控制溶解氧在0.5~1.0 mg/L,可保证氨氮的去除率达到95%~97%,总氮的去除率达到82%~85%。  相似文献   

6.
SBR法短程硝化-反硝化生物脱氮工艺的研究   总被引:4,自引:1,他引:4  
针对目前传统生物脱氮工艺存在的问题 ,结合国内外在该方向的研究现状 ,以实际豆制品废水为研究对象 ,控制反应器内混合液温度在 31± 0 .5℃的条件下 ,实现了短程硝化 反硝化生物脱氮工艺 ,NO-2 N NOx N的比率始终维持在90 %以上。并在此试验基础上 ,考察了曝气时间对反应器内氮形态变化的影响及系统对进水COD和NH3 N浓度的抗冲击负荷能力。结果显示 ,曝气时间对硝化效果影响较大 ,同时 ,本工艺具有较强的抗冲击负荷能力。  相似文献   

7.
控制DO及FA条件下短程硝化过程系统稳定性研究   总被引:5,自引:0,他引:5  
采用SBR工艺以水产品加工废水为研究对象,同时控制进水游离氨(FA)为0.96~1.25mg!L,溶解氧(DO)为1~2mg/L,实现了稳定的短程硝化过程。在此条件下,亚硝化率及氨氮去除率分别大于95%和88%,有机物(COD)去除率在90%以上,亚硝化速率维持在0.9666×10^-3-1.0375×10^-3mgNO2-N/(mgMLSS·h)之间。研究结果表明,同时控制DO及FA在适当范围之内可以获得稳定的短程硝化过程,并可降低系统能耗。本实验采用较低的FA浓度与较高的DO浓度(与OLAND工艺比较)得到了稳定的短程硝化过程,对水产品加工废水处理具有重要应用价值。  相似文献   

8.
针对纤维素产乙醇废水高有机物、高氨氮、难降解的特点,运用短程硝化反硝化脱氮工艺,基于序批式活性污泥反应器(SBR)的调试运行,研究反应器运行方式对COD去除和脱氮效能的影响,为日后纤维素乙醇废水处理的工程化提供借鉴。结果表明:通过控制DO(0.5 mg·L-1)、pH(7.6~8.5)和投加碳源等条件,可实现亚硝酸盐氮的积累和转化,最终三氮去除率稳定在70%以上;通过投加不同碳源对比实验,发现乙酸钠作为反硝化外加碳源比葡萄糖具有更高的效率;厌氧工艺处理过的纤维素乙醇废水经短程硝化反硝化工艺处理后,COD去除率维持在20%上下,表明废水可生化性极低,已不适应生物法处理,须利用化学氧化法才能进一步去除;通过周期实验,发现硝化阶段碱度过量对短程硝化进程影响并不明显,相反充足的碱度是保证硝化反应进行的必要条件。  相似文献   

9.
SBR法短程硝化-反硝化生物脱氮工艺的研究   总被引:14,自引:0,他引:14  
  相似文献   

10.
徐婷  王丽  吴军 《环境工程学报》2016,10(6):2840-2846
为考察pH值对短程硝化过程动力学的影响,采用SBR工艺,以人工模拟氨氮废水为研究对象,进行了不同pH条件下的硝化批次实验,对氨氮降解过程进行动力学分析。在Monod方程的基础上,分析pH值对氨氧化菌(AOB)和亚硝酸氧化菌(NOB)生长速率的影响,分别建立了AOB和NOB的生长数学模型。利用MATLAB软件,将模型与硝化阶段实测数据进行拟合,取得良好的模拟效果。在此基础上通过模型预测得到泥龄(SRT)为6 d,溶解氧为1.5 mg O2/L,pH值在7.3~8范围内有利于实现短程硝化。  相似文献   

11.
采用实时控制序批式膜生物反应器(sequencing batch membrane bioreactor,SMBR)工艺处理某种猪场的养殖粪尿污水,通过pH实时曲线上的"氨谷点"对曝气时间进行实时控制实现短程硝化。小试反应器10个月的连续运行结果表明,利用曝气时间实时控制实现了稳定的亚硝态氮累积。短程硝化启动后,SMBR对COD和TN的平均去除率分别达到95.5%和92.4%,亚硝态氮积累率可维持在85%以上。高通量测序与OTU分类的结果表明,实时控制下SMBR内NOB逐渐被淘洗,而AOB得到了富集。从反应器启动初期到获得稳定短程硝化(反应器运行200 d),AOB丰度提高了55倍,而对应的NOB丰度降低了2倍。此外,AOB的绝对数量与DO呈显著负相关(r=-0.846,0.01 p 4+-N浓度呈显著正相关(r=0.45,0.01p 4+-N的积累有利于AOB的富集。因此,利用曝气时间实时控制实现短程硝化是一种面向群落结构优化的控制方法,有利于短程硝化系统长期稳定的运行,具有实际应用价值和工程意义。  相似文献   

12.
溶解氧对SBR脱氮性能与脱氮方式的影响   总被引:4,自引:0,他引:4  
通过设置不同溶解氧(DO)浓度(曝气时段DO浓度均值分别为2.0、1.2和0.4 mg/L),研究了SBR的脱氮性能以及脱氮方式。结果表明,低DO条件下SBR可实现良好的脱氮效果,但需延长曝气时间。运行稳定后,各反应器氨氮的去除率均达到94%以上。总氮去除率随DO水平的降低而增高,分别为67%、74%和78%。不同DO浓度下SBR的脱氮方式不尽相同,DO浓度越低,同步硝化反硝化(SND)脱氮效果越明显。DO为2.0、1.2和0.4 mg/L时,SND率分别为31.4%、48.3%和66.8%。典型周期性实验表明,DO为2.0 mg/L时,通过SND现象去除的总氮占进水总氮的比例为7.6%,通过内源反硝化去除的总氮为12.0%;DO为1.2 mg/L时,通过亚硝酸型SND现象去除的总氮为12.2%,通过内源反硝化去除的总氮为8.1%;DO为0.4 mg/L时,通过亚硝酸型SND现象去除的总氮为15.8%,通过内源反硝化去除的总氮为5.0%。  相似文献   

13.
为了探讨固定化包埋填料高氨氮负荷下短程硝化的稳定运行研究,以固定化技术包埋一定量硝化菌填料为载体,并利用序批次反应器进行处理人工配置的氨氮废水实验,该实验研究了实现短程硝化影响因素DO、有机物的控制范围,驯化期间,分别将温度、pH值、DO控制在(31±1)℃、7.8~8.2、1.8~2.0 mg·L-1范围内,进水有机物浓度始终保持在50 mg·L-1以下,体积填充率为15%,采用高游离氨(3.03~14.18 mg·L-1)对NOB产生抑制作用,使活性填料中的AOB成为优势菌群,通过历时55 d的培养实现了该填料短程硝化的启动及稳定运行,结果表明,进水氨氮浓度保持200 mg·L-1左右,氨氮去除速率高达28.29 mg NH4+-N·(L·h)-1的同时,氨氮的去除率>97%,亚硝酸盐积累NO2--N/NOx--N>85%,实验同时还考察了活性填料的抗冲击负荷能力与单个周期内短程硝化运行特征。  相似文献   

14.
序批式生物膜反应器挂膜启动实现短程硝化   总被引:2,自引:0,他引:2  
常温条件下(20~25℃),以模拟的人工配水为研究对象,采用序批式生物膜反应器(SBBR),在初期挂膜的基础上,笔者运用两种不同的挂膜方式即重新加入新泥和不加新泥而加大进水COD浓度来实现生物膜的快速启动。实验表明,2种挂膜启动通过14 d的培养与富集,NH4+-N与COD的处理效果都能分别达到85%和75%以上。将剩余污泥排尽后,采用第1种挂膜方式的反应器通过连续间歇曝气,达到了比较好的短程硝化效果。调整溶解氧,并且通过先下降后上升曝气量的方式,能进一步提高亚氮的出水。最终在DO为3.6 mg/L时,亚氮的积累率能达到平均74%左右,达到了比较好的亚硝化效果。而第2种挂膜方式培养的生物膜则以好氧反硝化菌为主,去除的氨氮由同化作用和培养的好氧反硝化菌去除,以后者为主。通过比较可以看出,为了实现短程硝化,第1种挂膜方式比第2种更具有优越性,有利于硝化菌种的生长和亚氮的积累,而第2种方式则有利于培养好氧反硝化菌。  相似文献   

15.
针对厌氧氨氧化工艺需要提供充足的亚硝酸盐氮为电子受体的问题,利用培养基对SBR中具有一定短程硝化功能的污泥进行富集培养,得到氨氧化菌和亚硝酸盐氧化菌的数量之比为104︰1,并研究了工艺条件对短程硝化的影响,结果表明,适合氨氧化菌生长的最佳温度为30℃、pH为7.5、nHCO-3/nNH+4-N值为1。以适合氨氧化菌生长的最佳环境条件优化SBR,在进水氨氮浓度为250 mg/L时,氨氮的转化率达到90%以上,亚硝酸盐氮积累率维持在85%以上,反应器中氨氧化菌与亚硝酸盐氧化菌的数量之比为103∶1,亚硝酸盐的高效积累为厌氧氨氧化工艺处理高氨废水的过程提供了稳定的电子受体。  相似文献   

16.
炼油催化剂生产过程中产生的高盐度、高无机质的高氨氮废水难以处理。研究将短程硝化反硝化生物脱氮技术应用于该种废水的处理。实验同时控制反应器温度(31℃)、溶解氧(≤1.5 mg/L)、pH值(7.8~8.7)和污泥龄(30 d),较快地实现催化剂废水短程硝化污泥的驯化,亚硝酸盐平均积累率达到了97.4%。在此基础上,结合在线监控ORP、pH值变化情况及短程硝化反应动力学研究,较好地实现了炼油催化剂废水的短程硝化。  相似文献   

17.
采用一体化膜生物反应器处理模拟氨氮废水,通过改变温度、pH、DO实现了反应器中短程硝化的稳定运行。结果表明,在进水氨氮、COD分别为67~86、240~342 mg/L的情况下,当温度为30℃、进水pH为8.1时,通过逐渐降低DO至1.2mg/L,亚硝态氮得到富集,氨氮和COD的去除率均能达到80%以上,且系统的耐冲击负荷能力较好;整个运行期间保持了较高的混合液悬浮固体浓度(MLSS),处于3 200~8 210mg/L,污泥沉降比和污泥体积指数(SVI)相对稳定,SVI处于75~138mL/g。  相似文献   

18.
用微电极测定曝气量对SBR系统中硝化作用的影响   总被引:1,自引:0,他引:1  
为了研究曝气量对硝化作用的影响,实验采用3个相同的SBR装置,分别在曝气量为4、10和16 L/h的条件下处理人工污水,并采用自制的溶解氧、NO3-、NH4+和pH微电极测定了活性污泥絮体内部微元环境中相应基质的浓度。结果表明,曝气量为4 L/h时,活性污泥絮体内存在厌氧微区,NO3--N浓度减小了,发生了反硝化作用;而曝气量为10 L/h和16 L/h时,活性污泥絮体内发生的都是硝化反应,且NH4+-N浓度的减小量、NO3--N浓度的增大量都随着曝气量的增大而增大,pH随着曝气量的增大而减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号