首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近三年中国甲醛时空分布特征及影响因素分析   总被引:2,自引:0,他引:2  
近年来,研究大气污染物的时空分布特征及影响因素分析已成为环境科学领域研究的热点问题.本文基于OMI甲醛垂直柱浓度数据产品,结合各省市气象、植被、人类活动等数据,对全国2015—2017年甲醛柱浓度时空分布特征及影响因素进行了研究.结果表明,全国甲醛柱浓度分布极不均衡,整体呈现自东南沿海向西北递减的趋势,此外在新疆与西藏的小部分地区存在高值区域.3年来全国甲醛柱浓度为整体上升,且变化率在-1.02~1.46之间,其中全国81%地区呈上升趋势,19%地区呈下降趋势.全国甲醛柱浓度季节性变化规律表现为夏季春季秋季冬季.甲醛柱浓度时空分布受气象因素影响,整体上与气温、降水呈正相关,但部分地区降水对甲醛有消减作用;甲醛柱浓度也与植被量呈正相关,如植被丰富的西藏地区及我国东南部,植被对甲醛柱浓度的影响显著.全国大多数省份甲醛柱量与地区生产总值、汽车保有量呈显著正相关,人类足迹分布模式与甲醛柱浓度空间分布的一致性较高,指示在城市发达地区,人类活动和经济发展、汽车尾气是导致甲醛柱浓度增高的主要原因.  相似文献   

2.
利用OMI遥感的甲醛逐日数据、MODIS传感器监测的NDVI数据以及湖南省能源消耗和氮氧化物排放量数据,对2009~2017年湖南省对流层大气中甲醛柱浓度时空变化特征及其影响因素进行了探究。结果表明:湖南省甲醛柱浓度总体空间分布具有西部山区低、北部洞庭湖平原和南部南岭地区高的特征;近九年湖南省甲醛柱浓度时间分布呈先增加后减小的趋势,最高值出现在2012年,最低值出现在2017年;年内甲醛柱浓度值夏季最高,秋季、春季次之,冬季最低,最低值出现在12月,最高值出现于9月;影响因素中地形与风向因素对甲醛柱浓度的空间分布有一定的影响,甲醛柱浓度与温度的相关性较高,降水次之,植被对甲醛的产生有很大的贡献,能源消耗与氮氧化物排放是湖南省甲醛柱浓度变化的重要人为因素。  相似文献   

3.
为明确宁夏回族自治区(简称“宁夏”)大气中甲醛的含量及分布,基于OMI遥感反演数据,分析了2006—2015年宁夏甲醛柱浓度的时空分布,同时选取工业产值、机动车保有量、煤炭消耗量以及气温、地形地貌和风向等人为和自然因素进行相关性分析.结果表明:研究区内2006—2015年甲醛柱浓度整体呈上升趋势,年均增速为1.078×1015 molec/(cm2·a),其中2006—2011年逐年增大,2012—2015年呈波动上升趋势,并于2015年达到近10年的最高值;甲醛柱浓度季节性特征为夏季>冬季>秋季>春季;宁夏甲醛柱浓度月均值变化趋势整体上呈“W”型.空间上甲醛柱浓度高值区主要分布在宁夏中东部及南部地区,而北部及西部地区甲醛柱浓度相对较低.在人为因素中煤炭消耗量与甲醛柱浓度的相关性最高,相关系数达到0.88;在自然因素中甲醛柱浓度与气温相关系数达到0.63,地形地貌和风向对甲醛污染区域的分布有一定影响.研究显示,人为因素是影响宁夏甲醛柱浓度的主要因素.   相似文献   

4.
利用OMI传感器数据,研究黑龙江省2005~2016年对流层甲醛柱浓度时空分布特征,并探究甲醛柱浓度的主要影响因素.结果表明:近12年甲醛柱浓度值整体呈上升趋势,平均增速为0.43×1015(molec×a)/cm2,2005~2013年逐年加剧,2013~2014年小幅回降,2014~2016年趋于平稳;四季甲醛浓度水平为:夏季>秋季>冬季>春季;月均变化趋势符合正弦曲线分布,年内甲醛柱浓度最低值一般出现在2~3月,最高值一般在6~7月;空间整体分布具有明显梯度,呈现“南高北低”状态,高值区主要分布在哈尔滨市、大庆市等南部地区,低值区分布在大兴安岭地区、黑河市等地区;空间浓度变化显著,2005~2008年全省在1~4级水平污染内,2009年起首次出现6级污染,2009~2013年6级水平污染区域扩大,2014年6级水平污染区域明显缩小,2014~2016年以4~6级水平污染为主且分布均匀;甲醛柱浓度分布对地形地貌、风向、气温、降水变化均会产生响应,能源消费、工业生产、汽车保有量、建筑装修、化肥施用等是甲醛柱浓度变化的重要影响因素.  相似文献   

5.
近年来,有着致癌性质的甲醛在大气中的含量逐年增加,加强对大气甲醛及其影响因素的监测意义重大。本文利用OMI卫星反演数据,对2008~2016年甘肃省对流层甲醛柱浓度的时空特征以及影响因子进行分析。结果表明:(1)甘肃省甲醛柱浓度空间分布极其不平衡,呈现出由甘肃南部向中部、西北部逐渐降低的趋势,这与甘肃省自东南向西北的植被分布有关,植被排放对大气甲醛有一定的贡献。(2)甲醛柱浓度年均值最低为7.15×1015 molec/cm2,出现在2008年,最高为10.66×1015 molec/cm2,出现在2011年;按照季节划分甲醛柱浓度均值,表现为夏季 > 冬季 > 春季 > 秋季,这与夏季光化学反应和甘肃省冬季采暖有关;甘肃省大气中的甲醛以自然因素为主,人为因素次之。(3)甲醛柱浓度变化不仅与自然因素的温度呈显著正相关,还与社会经济因素中的第二产业值、工业产值以及能源消耗等具有一定相关性。甘肃省甲醛柱浓度时空特征总体受当地自然和社会经济因素的综合影响。  相似文献   

6.
基于Aura卫星OMI传感器的甲醛逐日数据,开展了2010—2019年粤港澳大湾区对流层甲醛垂直柱浓度的时空变化研究,并应用气象、植被和社会经济数据,对甲醛柱浓度变化的影响因子进行了分析.结果表明:2010—2019年粤港澳大湾区甲醛柱浓度呈波动起伏的变化特征,季节均值变化趋势与年度均值变化趋势相似,秋季季节浓度均值最高,其后依次为春季、夏季、冬季;在空间上,2010—2019年甲醛柱浓度均呈现自西北向东南逐渐降低的趋势,在甲醛柱浓度变化趋势上,粤港澳大湾区大部分区域呈现缓慢增加的趋势;针对不同土地覆盖类型,春季,绿地上空甲醛柱浓度高于建筑用地与耕地,夏、秋、冬季,建筑用地上空甲醛柱浓度略高;在空间分布稳定性上,受地形、土地覆盖类型和气象条件影响,西北部稳定性较强,南部珠江入海口处稳定性较弱;自然因子和人为因子对甲醛柱浓度的增长都有一定的贡献,其中,生产总值、汽车保有量、能源消耗量等人为因子对甲醛柱浓度的影响更为显著.  相似文献   

7.
基于臭氧监测仪(OMI)遥感数据获取中国东北三省(黑龙江、吉林、辽宁)2005~2018年的甲醛柱浓度,对东北三省近14年来甲醛的时空分布变化规律以及影响因子进行研究。结果表明:近14年来东北三省的甲醛年平均柱浓度呈先增大再减少,再增大的趋势,最大增长率为14.3%,最大降低率为10.1%;甲醛的月、季平均柱浓度变化具有明显规律性,在每年夏季(6~8月)出现最高值,冬季3月左右出现最低值;甲醛的季平均柱浓度水平为:夏季 > 秋季 > 冬季 > 春季;东北三省的甲醛柱浓度在空间上基本呈南高北低分布,高浓度区域主要集中在中部平原较发达的地区。甲醛柱浓度的影响因子包括自然条件和人类活动两个方面。降水和温度等气象因素是甲醛柱浓度变化的重要影响因素,而地形、植被等自然因素对甲醛的分布有一定的影响。交通运输和工业生产等人类活动对甲醛浓度的区域性变化也有重要贡献。  相似文献   

8.
基于OMIHCHO数据日产品,对2016年全国甲醛柱浓度数据进行了提取分析,并结合全国各省市温度、降雨量、植被覆盖度、人类活动等数据,在空间上与甲醛柱浓度做了相关性分析.结果表明:我国甲醛柱浓度空间分布极不平衡,呈现出东部及东南部地区甲醛柱浓度值普遍较高,而我国的西部及西北部地区表现出较低值;甲醛柱浓度月均值最低为8.31×1015molec/cm2,出现在10月份,最高为11.87×1015molec/cm2,出现在6月份,如果按照季节划分甲醛柱浓度均值,夏季 > 春季 > 冬季 > 秋季;从气象因子与甲醛柱浓度相关性分析结果来看,温度与甲醛柱浓度之间的相关性更为密切,但表现出空间上的差异性,此外,雨水对甲醛有一定的消除作用,但也在空间上有差异;由植被与甲醛柱浓度相关性结果来看,植被主要对东部及东南部地区甲醛柱浓度影响作用明显.甲醛柱浓度与各省市的地区生产总值、各产业增加值、机动车保有量的变化也存在着明显的相关性,而各产业增加值中工业与其相关性最高,说明工业排放和汽车尾气也是甲醛的主要来源.  相似文献   

9.
利用臭氧监测仪(OMI)卫星反演的甲醛柱浓度产品,探讨了2005—2016年间华北五省区域对流层甲醛柱浓度的时空分布变化特征及相关的影响因子,结果表明:近12年对流层甲醛柱浓度整体呈现上升趋势,2005—2011年甲醛柱浓度呈逐渐升高趋势,最高增长达32.24×1013mole·cm~(-2),且高值区逐渐扩大.空间分布上高值区整体分布在北京、天津及周围区域,低值区分布在河北的北部、河南的南部和山东的东部区域;2012—2016年甲醛柱浓度波动较小,呈下降趋势.12年中,每年的2—4月份甲醛柱浓度出现最小值,6—8月份甲醛柱浓度出现最大值,而2005年2月份甲醛柱浓度值最小,2011年7月份甲醛柱浓度值最大.四季对流层甲醛浓度水平:夏季秋季春季冬季.风向会影响甲醛浓度的扩散方向,气温的增加导致甲醛柱浓度的升高.但12年间区域生产总值的提高、汽车保有量增加和农业秸秆焚烧是影响甲醛柱浓度增加的主导因素.  相似文献   

10.
基于Aura-OMI HCHO数据产品,解译并分析了2008~2017年长江三角洲(以下简称长三角)地区甲醛柱浓度的数量分布、动态规律和影响因素.结果显示:10年甲醛柱量均值为14.16×1015molec/cm2、最大值15.41×1015molec/cm2、最小值12.27×1015molec/cm2、最大增速17.8%、平均增速0.17%、最大降速15.95%.时间上,10年来甲醛浓度呈波动上升的态势,以四级、三级和五级的变化为主,夏季最高,春秋次之,冬季最小,春夏秋冬四季的分担率分别是25.96%、34.28%、22.00%、17.76%.空间上,浓度整体从中部向两侧递减,沿海地区最低,高值区由西北向东南逐渐转移扩大.影响长江三角洲甲醛柱浓度变化的主要因素为自然因素和人为因素,自然因素以气温和降水为主,人为因素以能源消费总量、第二产业、第三产业、生产总值及家具和建房装修材料为主.长三角和京津冀的时空演化及影响因素有相同之处,也有不同之处.  相似文献   

11.
基于OMI卫星遥感反演的对流层甲醛柱浓度资料,对2005—2016年四川盆地对流层甲醛柱浓度的时空分布特征及其影响因素进行了分析.结果表明,12年间甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.17%.12年间甲醛柱浓度具有波动性,年均最低值和年均最高值分别出现于2005年和2012年.2005—2008年四川盆地甲醛柱浓度相对较低;2011年对流层甲醛柱浓度达到最大且高值区范围最大,2012年后浓度逐渐降低.四川盆地甲醛柱浓度季节变化表现为夏季春季秋季冬季.一年之中,月均甲醛柱浓度最小值基本出现在每年的11—12月,最大值则出现在6—8月.甲醛柱浓度空间分布的高值区主要分布在盆地内西南部的成都平原地区,低值区则多处于人为源排放较低的重庆东北部山区.能源消耗、生产总值及机动车保有量与对流层甲醛柱浓度具有显著的正相关关系.工业源、居民源和交通源排放对甲醛柱浓度具有重要贡献.四川盆地独特的地形及区域内风场对甲醛的扩散也有重要影响.  相似文献   

12.
基于OMI数据研究中国对流层甲醛时空分布特征及变化趋势   总被引:2,自引:0,他引:2  
利用OMI卫星遥感反演的甲醛柱浓度数据,结合MEGAN模式和MEIC排放清单研究了2005—2016年中国对流层甲醛柱浓度的时空特征和长期变化趋势,以及甲醛柱浓度的季节差异与排放源和地面风场的关系.结果表明,中国对流层甲醛柱浓度呈西低东高的空间分布特征,且高值区域主要分布在华北平原、长江三角洲、珠江三角洲及四川盆地等人为源排放较高的中东部地区.中国甲醛柱浓度存在明显的季节差异,表现为夏季秋季春季冬季.天然源VOCs和人为源VOCs排放均对甲醛柱浓度季节变化具有重要影响,光化学反应与气象条件在其中所起到的作用也不可忽略.生物源排放变化对甲醛年际变化趋势的影响不显著,中国东部地区甲醛柱浓度呈上升趋势主要是由于气候变率和人为因素的共同影响所致.  相似文献   

13.
京津冀对流层甲醛的时空演变特征及其影响因素   总被引:1,自引:0,他引:1  
依据2009—2016年OMI卫星反演的逐日数据,结合遥感图像处理技术和克里金插值法,对京津冀地区对流层甲醛柱浓度的时空特征及影响因素进行了分析.结果发现,2009—2016年8年间京津冀地区甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.01%,最大增长率出现于2009—2010年,为12.91%.8年间,甲醛柱浓度值具有波动性,最低值和最高值分别出现于2009年和2013年.研究区甲醛柱浓度季节变化表现为夏季值秋季值冬季值春季值,甲醛柱浓度月均值在每年的6月达到最高.甲醛柱浓度空间分布的低值区大多处于地势较高的京津冀地区西北部,高值区主要分布在京津冀地区南部平原.甲醛柱浓度变化不仅与自然因素的温度呈显著正相关,与气压呈显著负相关,还与社会经济因素中的煤炭消耗量、原油消耗量及工业增加值等呈正相关.京津冀地区甲醛柱浓度时空特征总体受当地自然和社会经济因素的综合影响.  相似文献   

14.
基于2005—2015年OMI反演的甲醛柱浓度月均数据,对中国及境内典型城市群甲醛柱浓度时空变化及影响因子进行了分析.结果发现,甲醛柱浓度高值区集中在京津冀中南部、山东西部、河南北部、江浙沪、珠三角、湖北东部、湖南东部、广西、四川与重庆交界.2005—2015年中国甲醛柱浓度总体呈上升趋势,其中,京津冀地区增长趋势最明显,江浙沪地区呈略微下降趋势.中国、京津冀及江浙沪地区夏季甲醛柱浓度明显高于其余3个季节,呈明显的周期性变化;2005—2015年中国4个季节甲醛柱浓度均呈增加趋势,京津冀地区除夏季外其余3个季节也呈增加趋势,江浙沪和珠三角地区各季节甲醛柱浓度变化趋势不一致.近11年,中国、京津冀和江浙沪地区7月甲醛柱浓度最高,珠三角地区9月甲醛柱浓度最高.京津冀和江浙沪地区甲醛柱浓度月最高值和月最低值之间的差异大于珠三角地区.中国、京津冀、江浙沪和珠三角地区近11年秸秆焚烧与相应甲醛柱浓度呈明显正相关,相关系数为0.84~1.00,表明秸秆焚烧是影响近11年甲醛柱浓度变化的重要因子.尽管有些区域季节温度与相应甲醛柱浓度呈负相关,但温度总体也是影响中国及这3个典型城市群甲醛柱浓度变化的另一个重要因子,京津冀地区尤其明显.月平均温度与相应甲醛柱浓度的相关系数为0.52~0.85.人口、民用汽车保有量和国内生产总值与中国、京津冀、江浙沪和珠三角地区相应甲醛柱浓度相关系数均低于0.60.影响因子分析结果暗示控制秸秆焚烧和减少温室效应是降低我国甲醛柱浓度的重要途径.  相似文献   

15.
基于OMI数据的兰州地区对流层甲醛时空变化研究   总被引:1,自引:0,他引:1  
基于OMHCHO遥感数据产品,对兰州地区2006—2016年对流层甲醛柱浓度的时空分布进行了分析,并对与其排放相关的因素进行了探讨,结果表明:2006—2016年对流层甲醛柱浓度整体呈上升趋势,其中2006—2011年甲醛柱浓度增加迅速,最大增长率为21.0%,2012—2016年甲醛柱浓度平缓波动上升,11年中年均增长率为5.4%;空间上甲醛柱浓度整体呈现由兰州市区西部及与其相邻的永登县部分区域向周边区域递增的趋势,2006—2011年表现为浓度级的增加和区域的扩大,2012—2015年浓度级及其区域基本不变,2016年在东南部出现高值甲醛柱浓度区;每年的最高值出现在6—8月份,11年中最大的柱浓度值出现在2011年的7月份,最低值基本出现在2—4月份,11年中最低的柱浓度值出现在2006年的2月份;四季对流层甲醛柱浓度水平为:夏季冬季秋季春季;影响因素中气温和风向对大气中甲醛的生成和分布有着促进作用,兰州地区生产总值及各产业增加值,尤其是工业产值和机动车保有量的增加,与甲醛柱浓度升高密切相关,这些人为因素是对流层中甲醛柱浓度变化的主要原因.  相似文献   

16.
根据2016-2017年日照国家基本气象站和日照市环保局所辖环境监测点气溶胶PM2.5观测数据,统计分析了2016-2017年日照市PM2.5的最小值、最大值、各月平均值、各时平均值等变化特征。结果表明,日照市2016-2017年PM2.5最小值为1μg/m3,共出现371次,各时均有出现,规律性不强;最高值为453.4μg/m3,出现在2016年12月20日凌晨3时,超过300μg/m3共出现过46次,每个时间段都出现过最高值,夜间凌晨居多;各月平均值1月最高,8月最低,冬季平均值明显高于夏季,和市环保局监测点数据分析分布规律相同,也呈双峰单谷;各时平均值9时最高,17时最低。  相似文献   

17.
焦作市是京津冀地区"2+26"通道城市之一.为研究焦作市大气污染特征,于2016年1月-2018年2月使用3个国控站点(马村区生态环境局、焦作市生态环境局和高新区政府)大气环境监测数据,以及2018年1月焦作市边界站PM2.5及其化学组分(水溶性离子和碳组分)监测数据进行分析.结果显示:焦作市大气污染以PM2.5污染为主,2017年ρ(NO2)、ρ(PM2.5)、ρ(PM10)、ρ(CO)和ρ(SO2)平均值分别为42.4 μg/m3、79.0 μg/m3、136.5 μg/m3、1.42 mg/m3和38.3 μg/m3,较2016年分别下降了10.5%、10.6%、11.2%、20.7%和37.6%.在时间分布上,大气污染物质量浓度日变化具有明显的季节性特征,春、夏两季ρ(NO2)日变化较秋、冬两季呈更宽的"U型",ρ(SO2)峰值出现在12:00左右,推测原因与夜间高架源排放有关;在空间分布上,本地一次污染排放可能主要来自市区工地扬尘、西南地区交通源和东部污染点源.观测期间,ρ(NO3-)、ρ(NH4+)和ρ(SO42-)较高,平均值分别为39.42、23.66和23.01 μg/m3,分别占水溶性离子质量浓度的41.8%、25.1%和24.4%,占ρ(PM2.5)的27.4%、16.4%和16.0%.污染天的NOR(氮转化率)(0.35)和SOR(硫转化率)(0.43)明显高于清洁天的NOR(0.25)和SOR(0.18),表明污染天NO2和SO2二次转化程度更高.SOR和NOR随相对湿度的增加而增加,表明相对湿度较高时有利于NO2和SO2的二次转化.污染天和清洁天ρ(SOC)(SOC为二次有机碳)估算值分别为19.79和3.51 μg/m3,分别占ρ(OC)的79.4%和54.9%,占ρ(PM2.5)的9.8%和10.4%,表明焦作市SOC对OC有较大的贡献.PSCF(潜在源贡献因子法)结果表明,本地源是影响焦作市秋、冬两季PM2.5的主要潜在源,太行山南麓区域输送也对其有一定贡献.研究显示,焦作市大气污染较严重,本地一次排放、二次转化和区域输送是焦作市PM2.5的主要来源.   相似文献   

18.
利用OMI卫星数据,分析了2005~2009年渤海对流层NO2的时空分布特征,研究发现近5 a渤海海域对流层NO2浓度空间分布不均,季节变化及年度增长趋势明显。空间分布上渤海西南部的渤海湾及莱州湾等海域浓度比较大,而东北部的辽东湾浓度比较低;NO2浓度季节变化也非常大,12月份垂直柱浓度(13.464×1015mol/cm2)是8月份(4.959×1015mol/cm2)的2.7倍。分析渤海湾与其周边的京津塘、环渤海西南部地区NO2浓度的月变化,发现冬季京津塘地区对渤海NO2浓度影响比较大,而夏季环渤海西南部地区对其影响比较大。  相似文献   

19.
沈阳市降尘时空分布特征及影响因素分析   总被引:1,自引:0,他引:1  
程昕  蔺昕 《环境保护科学》2009,35(6):1-3,58
大气中的污染物对人体健康存在直接危害,对其分布特征和来源开展研究可为大气环境质量改善提供理论依据。本文通过对沈阳市1997~2006年间大气降尘布点监测数据进行分析,发现沈阳市降尘量总体呈现下降趋势,采暖期降尘量高于非采暖期;沈阳市各城区降尘量大小顺序为:于洪区>沈河区>和平区>大东区>铁西区>东陵区>皇姑区;对比同期环境质量公报与气象数据,燃煤和区域气象条件是影响沈阳市降尘的重要内在和外来因素。  相似文献   

20.
基于Aura-OMI传感器L2-V003甲醛日产品数据,分析陕西省2010~2018年对流层的甲醛柱浓度时空分布特征,并结合自然和人为因素等进行探讨,结果表明:研究区9年间甲醛柱浓度年际均值呈波动上升趋势,空间分布上关中地区向南北两侧递减.最小值出现在2017年,为9.45×1015molec/cm2;最高值出现在2018年,为17.40×1015molec/cm2,年均值为12.82×1015molec/cm2,季节均值水平为:夏季﹥冬季﹥秋季﹥春季,其中秋季波动性最大,春季最小.月均值幅度较大,呈周期性现象.甲醛浓度稳定性沿秦岭山脉向南北两侧递减;风向、气温和降水等自然因素均对甲醛空间分布产生重要影响,以汉中市为主,植被覆盖度与甲醛呈正相关区域,房屋建筑竣工面积、工业废气排放量、汽车保有量及大气传输等也是引起甲醛浓度变化的重要因素,针对不同区域时空分布特征结合自然、社会因素的相关性分析,提出合理性建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号