首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We sought to understand why a social, desert rodent, the great gerbil, Rhombomys opimus, expends energy and possible risk of predation by footdrumming and vocalizing in the presence of a diversity of terrestrial predators: snakes, monitor lizards, polecats, foxes, and humans. Behavioral observations, human approaches, and experiments with tethered predators revealed that both male and female gerbils called and footdrummed in the presence of offspring, close relatives, and potential mates. Because adults called more often when pups were present, and solitary gerbils seldom gave an alarm, the alarm behavior probably warns conspecifics, especially vulnerable offspring, of potential danger. We also found that gerbils altered alarm behavior with the type of predator. They drummed more in the burrow when a dog that could not enter the burrow was present, and they drummed more out of the burrow in response to a snake that could enter the burrow. Gerbils vocalized and stood in an alert posture in response to all stimuli. The different footdrumming responses of gerbils to terrestrial predators seems related to the hunting style and type of risk posed by the predator, especially its ability to enter the burrow system. Received: 23 August 1999 / Received in revised form: 6 December 1999 / Accepted: 25 February 2000  相似文献   

2.
The reproductive success of male parental pumpkinseeds, Lepomisgibbosus, was studied in relation to the use of their nests by spawning golden shiners, Notemigonuscrysoleucas. The brood size of pumpkinseeds with and without golden shiner's young was compared in a field population. Mean egg and larval numbers of pumpkinseeds did not differ between broods with and without shiners, suggesting that shiners had no net effect on the fitness of host pumpkinseeds. In the laboratory, however, hatching success of pumpkinseed embryos was significantly lower with shiners than without. This difference was attributable to fungal infection. Against this fitness loss, the presence of shiner larvae reduced predation on pumpkinseed larvae in laboratory experiments. Thus, two counteracting mechanisms are proposed to account for no observed net effect on the host: (1) increased fungal infection on pumpkinseed embryos and (2) decreased predation on pumpkinseed young. Received: 10 January 1997 / Accepted after revision: 9 August 1997  相似文献   

3.
Parasites relying on trophic transmission to complete their life cycles often induce modifications of their host's behavior in ways that may increase their susceptibility to predation by final hosts. These modifications have often been interpreted as parasite adaptations, but very few studies have demonstrated that host manipulation has fitness benefits for the parasite. The aim of the present study was to address the adaptive significance of parasite manipulation by coupling observations of behavioral manipulation to estimates of trophic transmission to the definitive host in the natural environment. We show that the acanthocephalan parasite Pomphorhynchus laevis manipulates the drifting behavior of one of its intermediate hosts, the amphipod Gammarus pulex, but not of a sympatric host, the introduced amphipod Gammarus roeseli. We found a 26.3-28.3 times higher proportion of infected G. pulex in the stomach content of one of the definitive hosts of P. laevis, the bullhead Cottus gobio, than in the benthos. No such trend was observed for G. roeseli. The bell-shaped curve of mean parasite abundance (MPA) relative to host size observed in G. pulex also supported an increased predation mortality of P. laevis-infected individuals compared to uninfected amphipods. Again, no such pattern was observed in G. roeseli. Furthermore, our results indicate that the modifications induced by P. laevis are specific to the definitive host and do not increase the risk of predation by inappropriate hosts, here the adult edible frog Rana esculenta. Overall, our study is original in that it establishes, under field conditions, a direct link between parasitic manipulation and increased transmission to the definitive host, and more importantly, identifies the specificity of the manipulation both in the intermediate host species and toward the definitive host.  相似文献   

4.
Male-biased size dimorphism is usually expected to evolve in taxa with intense male–male competition for mates, and it is hence associated with high variances in male mating success. Most species of pycnogonid sea spiders exhibit female-biased size dimorphism, and are notable among arthropods for having exclusive male parental care of embryos. Relatively little, however, is known about their natural history, breeding ecology, and mating systems. Here we first show that Ammothella biunguiculata, a small intertidal sea spider, exhibits male-biased size dimorphism. Moreover, we combine genetic parentage analysis with quantitative measures of sexual selection to show that male body size does not appear to be under directional selection. Simulations of random mating revealed that mate acquisition in this species is largely driven by chance factors, although actual paternity success is likely non-randomly distributed. Finally, the opportunity for sexual selection (I s), an indirect metric for the potential strength of sexual selection, in A. biunguiculata males was less than half of that estimated in a sea spider with female-biased size dimorphism, suggesting the direction of size dimorphism may not be a reliable predictor of the intensity of sexual selection in this group. We highlight the suitability of pycnogonids as model systems for addressing questions relating parental investment and sexual selection, as well as the current lack of basic information on their natural history and breeding ecology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号