首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Growth season-based time series spectral coherence analysis was performed between weekly changes in hourly ambient O(3) concentrations and weekly changes in alfalfa height growth. Weekly median hourly O(3) concentration and the corresponding weekly cumulative integral (sum of all hourly concentrations within the week) were used as indicators of weekly O(3) spectral density and coherence with the change in weekly alfalfa height growth. In general, the weekly cumulative integral performed much better than the weekly median O(3) concentration. A conceptual analysis of the results is presented, along with a recommendation that crop growth stage-based cumulative integrals merit further evaluation towards a better understanding of cause-effect relationships.  相似文献   

2.
At 17 long-term pollution monitoring sites throughout the Carpathian Mountains, tree growth patterns and variation in growth rate were examined to determine relationship of tree growth to specific pollutants. Canopy dominant Picea abies and Fagus sylvatica were selected at each site. Basal area increment (BAI) values were calculated from raw ring widths and used as an estimate of tree growth. Across all sites, BAI chronologies were highly variable, therefore local conditions and forest structure accounted for considerable variation. Several significant relationships, however, implicated a role of pollutants on tree growth. Average levels (1997-1999) of NO(2) and SO(2) were inversely related to BAI means (1989-1999). Although average O(3) alone was not related to growth, the maximum O(3) value reported at the sites was negatively correlated with overall growth. A variable representing the combined effect of O(3), NO(2) and SO(2) was negatively correlated with both P. abies and F. sylvatica growth. Pollution data were used to categorize all sites into 'high' or 'low' pollution sites. Difference chronologies based on these categories indicated trends of decline in the 'high' pollution sites relative to 'low' pollution site. In the more heavily polluted sites, the BAI of Fagus sylvatica has declined approximately 50% and Picea abies has declined 20% over the past 45 years.  相似文献   

3.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

4.
Little is known about the concentrations, deposition rates, and effects of nitrogenous and sulfurous compounds in photochemical smog in the San Bernardino National Forest (SBNF) in southern California. Dry deposition of NO(3)(-) and NH(4)(+) to foliage of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev. & Balf.) was correlated (R = 0.83-0.88) with historical average hourly O(3) concentations at 10 sites across an O(3) gradient in the SBNF. Mean deposition fluxes of NO(3)(-) to ponderosa and Jeffrey pine branches were 0.82 nmol M(-2)s(-1) at Camp Paivika (CP), a high-pollution site, and 0.19 nmol m(-2) s(-1) at Camp Osceola (CAO), a low-pollution site. Deposition fluxes of NH(4)(+) were 0.32 nmol m(-2) s(-1) at CP and 0.17 nmol m(-2) s(-1) at CAO, while mean values for SO(4)(2-) were 0.03 at CP and 0.02 nmol m(-2) s(-1) at CAO. Deposition fluxes to paper and nylon filters were higher in most cases than fluxes to pine branches at the same site. The results of this study suggest that an atmospheric concentration and deposition gradient of N and S compounds occurs along with the west-east O(3) gradient in the SBNF. Annual stand-level dry deposition rates for S and N at CP and CAO were estimated. Further studies are needed to determine if high N deposition loads in the SBNF significantly affect plant/soil nutrient relations, tree health, and the response of ponderosa pine to ozone.  相似文献   

5.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

6.
The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29-July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 microm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb. Both models predict similar amounts of sulfate (SO4(2-)) and organic matter, and both predict SO4(2-) to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4+), nitrate (NO3-), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3-, NH4+, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37-43% and -33-4% for CMAQ and 50-59% and 7-30% for PMCAMx. Both models predict the largest MNGEs for NO3- (98-104% for CMAQ 138-338% for PMCAMx). The inaccurate NO3- predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.  相似文献   

7.
Goo JH  Irfan MF  Kim SD  Hong SC 《Chemosphere》2007,67(4):718-723
The selective catalytic reduction (SCR) characteristics of NO and NO(2) over V(2)O(5)-WO(3)-MnO(2)/TiO(2) catalyst using ammonia as a reducing agent have been determined in a fixed-bed reactor at 200-400 degrees C. The presence of NO(2) enhances the SCR activity at lower temperatures and the optimum ratio of NO(2)/NO(x) is found to be 0.5. During the SCR reactions, there are some side reactions occurred such as ammonia oxidation and N(2)O formation. At higher temperatures, the selective catalytic oxidation of ammonia and the nitrous oxide formation compete with the SCR reactions. The denitrification (DeNO(x)) conversion decreases at lower temperatures but it increases at higher temperatures with increasing SO(2) concentration. The presence of SO(2) in the feeds inhibits N(2)O formation.  相似文献   

8.
Agricultural meteorological modeling techniques are used to investigate the relative and absolute dry deposition fluxes of SO2 (as sulfur), HNO3 (as nitrogen) and O3 to large fields of maize, soybeans, and alfalfa exposed in conditions as measured in northern Illinois, central Pennsylvania, and eastern Tennessee. For HNO3, the differences in seasonal deposition rates among the three types of plant species are small. Within the same environment, the soybean canopy has the potential to receive substantially more gaseous dry deposition of SO2 and O3 than the maize and alfalfa (which are about the same), as a result of lower stomatal resistance and consequently higher deposition velocities. Deposition differences among the sites are small except for the case of SO2, for which deposition rates estimated for northern Illinois are nearly double those at the other locations. The high SO2 deposition at the northern Illinois location is a consequence of the higher air concentrations observed there.  相似文献   

9.
This study considers the characteristics of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)) and sulfur dioxide (SO(2)) in two major South Korean cities, including the capital city of Seoul, over a time period of 7-8 years. Changes in the annual mean and percentiles of the daily 1-h maximum and other hour-based concentrations varied according to the compound and city type. Seasonal variations varied according to the compound, yet not with the city type. Both Seoul and Taegu exhibited lower O(3) concentrations in July compared to other summer months. There was a high degree of correlation between the daily 1- and 8-h maximum or daily mean concentrations of all compounds in both cities, with an R(2) of 0.66-0.90 at p<0.0001. It was indicated that for CO and O(3), the 8-h standard was more stringent than the 1-h standard, while for NO(2) and SO(2), the 1-h standard was more stringent than the 24-h standard. The correlation coefficients between the daily 1-h maximum and daily mean concentrations decreased as the maximum concentration values of NO(2), O(3 ), and SO(2) increased in the two cities. For all the target compounds, Seoul recorded a substantially higher frequency of days with concentrations above the relevant 1-, 8-, and 24-h standards compared to Taegu.  相似文献   

10.
Foliar phenol concentrations (total and simple phenols) were determined in Aleppo pine (Pinus halepensis Mill.) needles collected in June 2000, from 6 sites affected by various forms of atmospheric pollutants (NO, NO(2), NO(x), O(3) and SO(2)) monitored during two months. Results show an increase in total phenol content with exposure to sulphur dioxide and a reduction with exposure to nitrogen oxide pollution. p-Coumaric acid, syringic acid and 4-hydroxybenzoic acid concentrations increase with exposure to nitrogen oxide pollution, whereas gallic acid and vanillin decrease in the presence respectively of sulphur dioxide and ozone. This in situ work confirms the major interest of using total and simple phenolic compounds of P. halepensis as biological indicators of air quality.  相似文献   

11.
This study aims to design a dry deposition chamber and to measure ozone depletion over the Taichung field soil. This study seeks to verify the phenomena by an experimental and mathematical model. It is demonstrated that interfacial mass transfer resistances of ozone dry deposition involve reactive resistance (R(sr)) and kinetic resistance (R(sk)). It reveals the chemical reaction (O3 + NO --> NO2) to produce the reactive resistance, and verifies that the interfacial mass transfer resistances depend on nitrogen oxide emission and soil temperature. It shows that the interfacial mass transfer resistances are reduced with increasing soil temperature (T(S)). The model profiles are smaller than the observed data within a relative error of 15%. The reactive resistance decreases exponentially with increasing soil temperature; R(sr)(-1) (cm x sec(-1)) = 0.0001 exp (0.1455T(S)). The kinetic resistance decreases linearly with increasing soil temperature; R(sk)(-1)(cm x sec(-1)) = 0.0108T(S) + 1.4012. This model is more accurate with higher soil temperature and larger ozone concentration. Results are consistent with thermodynamics and reaction kinetics. Ozone dry deposition over agricultural soil causes conversion of nitrogen oxide (NO) to nitrogen dioxide (NO2).  相似文献   

12.
采用K2Cr2O7溶液作为吸收液,在自制的鼓泡反应器内,对模拟烟气进行同时脱硫脱硝的实验研究,考察多种因素对SO2脱除率(即脱硫率)和NO脱除率(即脱硝率)的影响。实验结果表明:K2Cr2O7浓度、反应温度、NO浓度、SO2浓度、烟气流量对脱硫率、脱硝率影响显著;当烟气流量为0.4L/min,气相中O2体积分数为6%,SO2体积分数为0.09%,NO体积分数为0.100%,K2Cr2O7摩尔浓度为10mmol/L,反应温度为40℃时,脱硫率、脱硝率分别达到100%和64.3%。  相似文献   

13.
A multi-variate, non-linear statistical model is described to simulate passive O3 sampler data to mimic the hourly frequency distributions of continuous measurements using climatologic O3 indicators and passive sampler measurements. The main meteorological parameters identified by the model were, air temperature, relative humidity, solar radiation and wind speed, although other parameters were also considered. Together, air temperature, relative humidity and passive sampler data by themselves could explain 62.5-67.5% (R(2)) of the corresponding variability of the continuously measured O3 data. The final correlation coefficients (r) between the predicted hourly O3 concentrations from the passive sampler data and the true, continuous measurements were 0.819-0.854, with an accuracy of 92-94% for the predictive capability. With the addition of soil moisture data, the model can lead to the first order approximation of atmospheric O3 flux and plant stomatal uptake. Additionally, if such data are coupled to multi-point plant response measurements, meaningful cause-effect relationships can be derived in the future.  相似文献   

14.
Tsai YI  Cheng MT 《Chemosphere》2004,54(8):1171-1181
Ambient PM10 aerosol samples were collected from Taiwan's Taichung metropolitan basin between October 1997 and January 1998, and their chemical characteristics studied. The average mass concentration of PM10 was 109.0 +/- 54.1 microg/m3. Carbonaceous materials, sulfate, nitrate, and ammonium were the most important contributors to the PM10 component. On average, 64% of the PM10 was made up of fine particles. During PM10 episodes, average wind speed was 0.7 m/s and relative humidity was high, 83% on average, probably giving rise to stagnation of air pollutants and their entrapment close to the surface. With relative humidity < 70%, NO3-, NH4+, SO4(2-), carbonaceous materials, and PM10 mass showed high correlation with maximum hourly average ozone (O3M). Variation in atmospheric humidity may affect the gas-to-particle interactions of S and N species. The most significant contribution to PM10 in the Taichung urban basin was from the photochemical formation of secondary aerosols and carbonaceous materials in the atmospheric environment.  相似文献   

15.
Indoor and outdoor air quality investigation at schools in Hong Kong   总被引:7,自引:0,他引:7  
Lee SC  Chang M 《Chemosphere》2000,41(1-2):109-113
Five classrooms in Hong Kong (HK), air-conditioned or ceiling fans ventilated, were chosen for investigation of indoor and outdoor air quality. Parameters such as temperature, relative humidity (RH), carbon dioxide (CO2), sulphur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), respirable particulate matter (PM10), formaldehyde (HCHO), and total bacteria counts were monitored indoors and outdoors simultaneously. The average respirable particulate matter concentrations were higher than the HK Objective, and the maximum indoor PM10 level exceeded 1000 microg/m3. Indoor CO2 concentrations often exceeded 1000 microl/l in air-conditioning and ceiling fan classrooms, indicating inadequate ventilation. Maximum indoor CO2 level reached 5900 microl/l during class at the classroom with cooling tower ventilation. Increasing the rate of ventilation or implementation of breaks between classes is recommended to alleviate the high CO2 level. Other pollution parameters measured in this study complied with the standards. The two most important classroom air quality problems in Hong Kong were PM10 and CO2 levels.  相似文献   

16.
本文对采用电化学方法去除SO2/NOx废气这一新的研究方法进行了综述.在用酞花青钴(CoPc)修饰的碳气体扩散电极上,SO2在空气中的体积百分数在20%以下时可以完全被氧化为硫酸,以连二硫酸盐(S2O2-4)作还原剂,Fe2+-EDTA作络合剂时,NO以90%以上的程度还原为NH+4与NH2(SO3H)等低价含氮化合物,产物中未见N2、N2O与NO2等气体,氧化产物SO2-3(或HSO-3)在Pb阴极上还原再生为S2O2-4.用Ce4+作氧化剂可将SO2/NO2氧化为相应的酸,还原产物Ce3+经电解氧化后循环使用.  相似文献   

17.
鼓泡反应器中液相络合催化同时脱硫脱硝的研究   总被引:1,自引:0,他引:1  
在鼓泡反应器中考察了[Co(en)3]2+同时吸收去除SO2和NO的影响因素,实验结果表明,pH值和脱硫剂种类是影响乙二胺合钴同时脱除NO和SO2的最重要影响因素,烟气中的氧促进乙二胺合钴吸收NO和SO2,烟气中的SO2,CO2和NO2对乙二胺合钴吸收NO具有抑制作用。在实验条件温度为20℃,pH为13.0,[Co(en)3]2+浓度为0.025 mol/L,加入1 g NH3.H2O的脱硝率更好,连续吸收60 min,脱硝率均保持在93.5%,加入NaOH和NH3.H2O的脱硫效果最好。乙二胺合钴络合同时脱除NO和SO2完全可以在一个装置中完成。  相似文献   

18.
Continuous measurements of particle number (PN), particle mass (PM10), and gaseous pollutants [carbon monoxide (CO), nitric oxide (NO), oxides of nitrogen (NOx), and ozone (O3)] were performed at five urban sites in the Los Angeles Basin to support the University of Southern California Children's Health Study in 2002. The degree of correlation between hourly PN and concentrations of CO, NO, and nitrogen dioxide (NO2) at each site over the entire year was generally low to moderate (r values in the range of 0.1-0.5), with a few notable exceptions. In general, associations between PN and O3 were either negative or insignificant. Similar analyses of seasonal data resulted in levels of correlation with large variation, ranging from 0.0 to 0.94 depending on site and season. Summertime data showed a generally higher correlation between the 24-hr average PN concentrations and CO, NO, and NO2 than corresponding hourly concentrations. Hourly correlations between PN and both CO and NO were strengthened during morning rush-hour periods, indicating a common vehicular source. Comparing hourly particle number concentrations between sites also showed low to moderate spatial correlations, with most correlation coefficients below 0.4. Given the low to moderate associations found in this study, gaseous co-pollutants should not be used as surrogates to assess human exposure to airborne particle number concentrations.  相似文献   

19.
Ozone (O(3)) pollution episodes take place in Catalonia (NE of the Iberian Peninsula), mainly during summertime. The complex O(3) behaviour could be understood by using a Chemical Transport Model (CTM). Emission inventories provide the spatial and temporal emissions distribution of the O(3) precursors and other pollutants required by this approach. We developed the EMICAT2000 model with high spatial (cells of 1 km(2)) and temporal (1h) resolutions, to estimate the emissions during the year 2000 from Catalonia. Total annual emissions were 107 kt yr(-1) of NO(x), 137 kt yr(-1) of NMVOC, 267 kt yr(-1) of CO, 65 kt yr(-1) of SO(2), 24 kt yr(-1) of TSP and 32,175 kt yr(-1) of equivalent CO(2). Main NO(x) sources are on-road traffic (58%) and industries (38%). Main NMVOC sources are on-road traffic (36%), vegetation (34%) and use of solvents (13%). Speciation was established according to the Carbon Bond IV mechanism. EMICAT2000 generates directly the data files required for the third generation CTM Models-3/CMAQ.  相似文献   

20.
Air pollution and forest health: toward new monitoring concepts   总被引:4,自引:0,他引:4  
It is estimated that 49% of forests (17 million km(2)) will be exposed to damaging concentrations of tropospheric O(3) by 2100. Global forest area at risk from S deposition may reach 5.9 million km(2) by 2050, despite SO(2) emission reductions of 48% in North America and 25% in Europe. Although SO(2) levels have decreased, emissions of NO(x) are little changed, or have increased slightly. In some regions, the molar SO(4)/NO(3) ratio in precipitation has switched from 2/1 to near 1/1 during the past two decades. Coincidentally, pattern shifts in precipitation and temperature are evident. A number of reports suggest that forests are being affected by air pollution. Yet, the extent to which such effects occur is uncertain, despite the efforts dedicated to monitoring forests. Routine monitoring programmes provide a huge amount of data. Yet in many cases, these data do not fit the conceptual and statistical requirements for detecting status and trends of forest health, nor for cause-effect research. There is a clear need for a re-thinking of monitoring strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号