共查询到12条相似文献,搜索用时 0 毫秒
1.
Active Adaptive Management for Conservation 总被引:4,自引:0,他引:4
Abstract: Active adaptive management balances the requirements of management with the need to learn about the system being managed, which leads to better decisions. It is difficult to judge the benefit of management actions that accelerate information gain, relative to the benefit of making the best management decision given what is known at the time. We present a first step in developing methods to optimize management decisions that incorporate both uncertainty and learning via adaptive management. We assumed a manager can allocate effort to discrete units (e.g., areas for revegetation or animals for reintroduction), the outcome can be measured as success or failure (e.g., the revegetation in an area is successful or the animal survives and breeds), and the manager has two possible management options from which to choose. We further assumed that there is an annual budget that may be allocated to one or both of the two options and that the manager must decide on the allocation. We used Bayesian updating of the probability of success of the two options and stochastic dynamic programming to determine the optimal strategy over a specified number of years. The costs, level of certainty about the success of the two options, and the timeframe of management all influenced the optimal allocation of the annual budget. In addition, the choice of management objective had a large influence on the optimal decision. In a case study of Merri Creek, Melbourne, Australia, we applied the approach to determining revegetation strategies. Our approach can be used to determine how best to manage ecological systems in the face of uncertainty. 相似文献
2.
Adaptive Decision Rules for the Acquisition of Nature Reserves 总被引:3,自引:0,他引:3
Abstract: Although reserve-design algorithms have shown promise for increasing the efficiency of conservation planning, recent work casts doubt on the usefulness of some of these approaches in practice. Using three data sets that vary widely in size and complexity, we compared various decision rules for acquiring reserve networks over multiyear periods. We explored three factors that are often important in real-world conservation efforts: uncertain availability of sites for acquisition, degradation of sites, and overall budget constraints. We evaluated the relative strengths and weaknesses of existing optimal and heuristic decision rules and developed a new set of adaptive decision rules that combine the strengths of existing optimal and heuristic approaches. All three of the new adaptive rules performed better than the existing rules we tested under virtually all scenarios of site availability, site degradation, and budget constraints. Moreover, the adaptive rules required no additional data beyond what was readily available and were relatively easy to compute. 相似文献
3.
Species Extinction in the Marine Environment: Tasmania as a Regional Example of Overlooked Losses in Biodiversity 总被引:2,自引:0,他引:2
Abstract: We used Tasmania as a case example to question the consensus that few marine species have recently become extinct or are approaching extinction. Threats to marine and estuarine species—primarily in the form of climate change, invasive species, fishing, and catchment discharges—are accelerating, fully encompass species ranges, and are of sufficient magnitude to cause extinction. Our ignorance of declining biodiversity in the marine environment largely results from an almost complete lack of systematic broad-scale sampling and an overreliance on physicochemical data to monitor environmental trends. Population declines for marine species approaching extinction will generally go unnoticed because of the hidden nature of their environment and lack of quantitative data. 相似文献
4.
Abstract: The consequences of climate change will affect aquatic ecosystems, including aquatic invasive species (AIS) that are already affecting these ecosystems. Effects on AIS include range shifts and more frequent overwintering of species. These effects may create new challenges for AIS management. We examined available U.S. state AIS management plans to assess each program's capacity to adapt to climate-change effects. We scored the adaptive capacity of AIS management plans on the basis of whether they addressed potential impacts resulting from climate change; demonstrated a capacity to adapt to changing conditions; provided for monitoring strategies; provided for plan revisions; and described funding for implementation. Most plans did not mention climate change specifically, but some did acknowledge climatic boundaries of species and ecosystem sensitivities to changing conditions. Just under half the plans mentioned changing environmental conditions as a factor, most frequently as part of research activities. Activities associated with monitoring showed the highest capacity to include information on changing conditions, and future revisions to management plans are likely to be the easiest avenue through which to address climate-change effects on AIS management activities. Our results show that programs have the capacity to incorporate information about climate-change effects and that the adaptive-management framework may be an appropriate approach. 相似文献
5.
LYNSEY R. PESTES RANDALL M. PETERMAN§ MICHAEL J. BRADFORD† CHRIS C. WOOD‡ 《Conservation biology》2008,22(2):351-361
Abstract: The endangered population of sockeye salmon (Oncorhynchus nerka) in Cultus Lake, British Columbia, Canada, migrates through commercial fishing areas along with other, much more abundant sockeye salmon populations, but it is not feasible to selectively harvest only the latter, abundant populations. This situation creates controversial trade-offs between recovery actions and economic revenue. We conducted a Bayesian decision analysis to evaluate options for recovery of Cultus Lake sockeye salmon. We used a stochastic population model that included 2 sources of uncertainty that are often omitted from such analyses: structural uncertainty in the magnitude of a potential Allee effect and implementation uncertainty (the deviation between targets and actual outcomes of management actions). Numerous state-dependent, time-independent management actions meet recovery objectives. These actions prescribe limitations on commercial harvest rates as a function of abundance of Cultus Lake sockeye salmon. We also quantified how much reduction in economic value of commercial harvests of the more abundant sockeye salmon populations would be expected for a given increase in the probability of recovery of the Cultus population. Such results illustrate how Bayesian decision analysis can rank options for dealing with conservation risks and can help inform trade-off discussions among decision makers and among groups that have competing objectives. 相似文献
6.
Beyond Biogeography: a Framework for Involving the Public in Planning of U.S. Marine Protected Areas 总被引:2,自引:0,他引:2
TRACEY MORIN DALTON 《Conservation biology》2005,19(5):1392-1401
Abstract: Planning of marine protected areas (MPAs) is highlighted in the conservation literature but is not explored in much detail. Many researchers acknowledge the importance of involving the public in MPA planning, but there is limited guidance on how to do this in an effective manner. I present a framework for involving the public in planning of U.S. MPAs. Derived from empirically and theoretically based research on public participation in U.S. natural resource management, this framework is composed of factors that influence the success of participatory processes: active participant involvement, complete information exchange, fair decision making, efficient administration, and positive participant interactions. Processes incorporating these factors will produce decisions that are more likely to be supported by stakeholders, meet management objectives, and fulfill conservation goals. This framework contributes to the MPA social science literature and responds to calls in the conservation literature to increase the use of social science research to inform conservation decision making. 相似文献
7.
SVEN E. KERWATH†† EVA B. THORSTAD† TOR F. NÆSJE†§ PAUL D. COWLEY§ FINN ØKLAND† CHRIS WILKE COLIN G. ATTWOOD‡ 《Conservation biology》2009,23(3):653-661
Abstract: The application of no-take areas in fisheries remains controversial. Critics argue that many targeted species are too mobile to benefit from area protection and that no-take areas are only appropriate for resident species. The degree of protection does not depend on the size of the no-take area but rather on the time fish reside inside its boundaries during key life-history events (i.e., spawning) and during periods of peak fishing activity. We evaluated the potential of a small no-take marine protected area (MPA) inside a coastal embayment as a harvest refuge for a mobile, possibly migratory, long-lived fish species. We used acoustic telemetry to track movements of 30 transmitter-tagged white stumpnose (Rhabdosargus globiceps) across and on both sides of the boundary of a small (34 km2 ) no-take area over a full year. Being landlocked on 3 sides, the location of the MPA inside the lagoon made it practical to detect all boundary crossings and to calculate the time individual fish used the MPA. We detected frequent movements across the boundary, with strong seasonal and individual variations. There were significant differences in MPA use patterns between fish from different release areas. The time spent in the MPA by individual fish during summer (mean 50%; max 98%) was out of proportion with the size of that area (4% of total habitat). Summer coincided with peak recreational fishing activity and with the spawning season of this species. The small MPA provided a refuge for a part of the spawning stock of white stumpnose. Our findings suggest that if strategically placed, a small no-take area can be effective in protecting mobile species and that models of spillover from no-take areas should account for seasonal and individual variation in area use and the spatiotemporal distribution of fish and fishers. 相似文献
8.
Abstract: The conservation of biodiversity poses an exceptionally difficult problem in that it needs to be effective in a context of double uncertainty: scientific (i.e., how to conserve biodiversity) and normative (i.e., which biodiversity to conserve and why). Although adaptive management offers a promising approach to overcome scientific uncertainty, normative uncertainty is seldom tackled by conservation science. We expanded on the approach proposed by adaptive‐management theorists by devising an integrative and iterative approach to conservation that encompasses both types of uncertainty. Inspired by environmental pragmatism, we suggest that moral values at stake in biodiversity conservation are plastic and that a plurality of individual normative positions can coexist and evolve. Moral values should thus be explored through an experimental process as additional parameters to be incorporated in the traditional adaptive‐management approach. As such, moral values should also be monitored by environmental ethicists working side by side with scientists and managers on conservation projects. Acknowledging the diversity of moral values and integrating them in a process of collective deliberation will help overcome the normative uncertainty. We used Dewey's distinction between adaptation and adjustment to offer a new paradigm built around what we call adjustive management, which reflects both the uncertainty and the likely evolution of the moral values humans attribute to biodiversity. We illustrate how this paradigm relates to practical conservation decisions by exploring the case of the Sacred Ibis (Threskiornis aethiopicus), an alien species in France that is the target of an eradication plan undertaken with little regard for moral issues. We propose that a more satisfying result of efforts to control Sacred Ibis could have been reached by rerouting the traditional feedback loop of adaptive management to include a normative inquiry. This adjustive management approach now needs to be tested in real‐case conservation programs. 相似文献
9.
Abstract: The umbrella‐species concept, which suggests that conservation strategies designed for one species may benefit co‐occurring species, has been promoted as a framework for conservation planning. Nevertheless, there has been considerable variation in the outcome of empirical tests of this concept that has led researchers to question its value, so we used data from 15 published studies in a meta‐analysis to evaluate whether conservation of putative umbrella species also conserves co‐occurring species. We tested the effectiveness of putative umbrella species categorized by taxonomic group, taxonomic similarity to co‐occurring species, body size, generality of resource use, and trophic level to evaluate criteria proposed to guide the selection of umbrella species. We compared species richness and number of individuals (by species and higher taxonomic group) between sites with and without putative umbrella species to test whether more co‐occurring species were present in greater abundances when the area or resource needs of umbrella species were met. Species richness and abundance of co‐occurring species were consistently higher in sites where umbrella species were present than where they were not and for conservation schemes with avian than with mammalian umbrella species. There were no differences in species richness or species abundance with resource generalist or specialist umbrella species or based on taxonomic similarity of umbrella and co‐occurring species. Taxonomic group abundance was higher in across‐taxonomic umbrella species schemes than when umbrella species were of the same taxon as co‐occurring species. Co‐occurring species had similar, or higher, species richness with small‐bodied umbrella species relative to larger‐bodied umbrella species. The only significant difference among umbrella species categorized by trophic level was that species richness was higher with omnivorous than it was with carnivorous avian umbrella species. Our results suggest there is merit to the umbrella‐species concept for conservation, but they do not support the use of the criteria we used to identify umbrella species. 相似文献
10.
Abstract: Marking animals so that they are uniquely identifiable provides information that may assist conservation efforts. Nevertheless, some methods used to mark animals can be harmful. We used mathematical methods to assess the trade‐off between the impact of marking threatened species and the value of the information gained. We considered the case where 2 management strategies, each aiming to improve a species' survival rate, are implemented in an experimental phase. The results of the experiment were applied in a postexperimental management phase. We expressed the expected number of survivors in both phases mathematically, accounting for any mortality caused by the experiment, and determined the proportion of animals to mark to maximize this number. The optimal number of animals to mark increased with the number of individuals available for the experiment and with the number of individuals to be managed in the future. The optimal solution was to mark only 25% of the animals when there were 1000 individuals available for the experiment, the results were used to manage 2000 individuals, and marking caused mortality of 1%. Fewer animals were marked when there were fewer animals in either phase or when marking caused higher mortality. In the case of the Helmeted Honeyeater (Lichenostomus melanops cassidix), the optimal proportion to mark was <1 if the mortality rate was >0.15%–1%, with the threshold depending on the number of animals in the experimental and postexperimental phases. The trade‐off between gaining more information about a species and possibly harming individuals of that species by marking them is difficult to assess subjectively. We show how to determine objectively the optimal proportion of animals to mark to enhance the management of threatened species. 相似文献
11.
DAVID G. HOLE BRIAN HUNTLEY JULIUS ARINAITWE STUART H. M. BUTCHART YVONNE C. COLLINGHAM LINCOLN D. C. FISHPOOL DEBORAH J. PAIN STEPHEN G. WILLIS 《Conservation biology》2011,25(2):305-315
Abstract: Networks of sites of high importance for conservation of biological diversity are a cornerstone of current conservation strategies but are fixed in space and time. As climate change progresses, substantial shifts in species’ ranges may transform the ecological community that can be supported at a given site. Thus, some species in an existing network may not be protected in the future or may be protected only if they can move to sites that in future provide suitable conditions. We developed an approach to determine appropriate climate‐change adaptation strategies for individual sites within a network that was based on projections of future changes in the relative proportions of emigrants (species for which a site becomes climatically unsuitable), colonists (species for which a site becomes climatically suitable), and persistent species (species able to remain within a site despite the climatic change). Our approach also identifies key regions where additions to a network could enhance its future effectiveness. Using the sub‐Saharan African Important Bird Area (IBA) network as a case study, we found that appropriate conservation strategies for individual sites varied widely across sub‐Saharan Africa, and key regions where new sites could help increase network robustness varied in space and time. Although these results highlight the potential difficulties within any planning framework that seeks to address climate‐change adaptation needs, they demonstrate that such planning frameworks are necessary, if current conservation strategies are to be adapted effectively, and feasible, if applied judiciously. 相似文献
12.
Abstract: Protected areas must be close, or connected, enough to allow for the preservation of large‐scale ecological and evolutionary processes, such as gene flow, migration, and range shifts in response to climate change. Nevertheless, it is unknown whether the network of protected areas in the United States is connected in a way that will preserve biodiversity over large temporal and spatial scales. It is also unclear whether protected‐area networks that function for larger species will function for smaller species. We assessed the connectivity of protected areas in the three largest biomes in the United States. With methods from graph theory—a branch of mathematics that deals with connectivity and flow—we identified and measured networks of protected areas for three different groups of mammals. We also examined the value of using umbrella species (typically large‐bodied, far‐ranging mammals) in designing large‐scale networks of protected areas. Although the total amount of protected land varied greatly among biomes in the United States, overall connectivity did not. In general, protected‐area networks were well connected for large mammals but not for smaller mammals. Additionally, it was not possible to predict connectivity for small mammals on the basis of connectivity for large mammals, which suggests the umbrella species approach may not be an appropriate design strategy for conservation networks intended to protect many species. Our findings indicate different strategies should be used to increase the likelihood of persistence for different groups of species. Strategic linkages of existing lands should be a conservation priority for smaller mammals, whereas conservation of larger mammals would benefit most from the protection of more land. 相似文献