首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
通过在膜生物反应器中添加填料,在保持良好出水水质的前提下可有效降低悬浮污泥浓度,从而减轻膜表面的污泥沉积,减轻膜污染。在处理生活污水的试验中,膜表面泥饼层阻力在总阻力中的比例下降到10%,而膜孔吸附阻力中由溶解性有机物所造成的阻力占到83.3%,这表明由于膜表面的污泥沉积降低,膜组件对溶解性有机物的吸附增加,因而应当选择合适的污泥浓度以得到最佳的综合效果。  相似文献   

2.
分别采用动态膜生物反应器(DMBR)与复合式动态膜生物反应器(HDMBR)处理印染废水,研究投加悬浮填料前后对污染物去除和膜污染控制影响。投加和未投加悬浮填料的反应器分别标为反应器A和B。结果表明,A反应器对色度、浊度、NH4+-N、TN、TP、COD、UV254平均去除率依次为86.39%、96.00%、90.13%、85.84%、89.63%、95.75%和88.24%,分别比B反应器提高了6.15%、2.24%、8.33%、5.99%、5.56%、1.79%和6.39%。对两反应器污泥混合液进行变性梯度凝胶电泳分离可知,水解酸化池与好氧池内既有相同的微生物种属,也有其特有的种属,而A反应器中各微生物优势地位均比B反应器明显。A反应器中混合液的EPS浓度增加量、LB-EPS积累量、污泥粒径小于10 μm所占比例、膜通量降低幅度均小于B反应器,LB-EPS积累量是影响污泥混合液中Zeta电位、污泥粘度变化的主要原因。膜表面滤饼层的红外图谱与三维荧光图谱解析,验证了蛋白质和多糖是膜表面污染物的主要成分。A反应器中悬浮填料为微生物提供载体,增强了微生物降解能力,能提高对污染物的去除率,同时也延缓了膜污染。  相似文献   

3.
采用投加悬浮填料的复合式膜生物反应器(HMBR)中试装置处理校园生活污水,考察其对有机碳和氨氮的去除效果。实验结果表明,反应器具有较好的污染物去除效果,HMBR对COD的平均去除率为88%,对氨氮的平均去除率超过97.5%。采用比耗氧速率(SOUR)来表征活性污泥的生物活性,SOUR随着有机负荷的变化逐渐从80 mg/(kg.min)降到30 mg/(kg.min)。实验过程中,经历有机负荷率(OLR)和氨氮负荷率(NLR)的变化,结果显示,其对污泥特性和膜污染速率有较大影响。  相似文献   

4.
厌氧膜生物反应器处理酒厂废水运行特性研究   总被引:1,自引:0,他引:1  
在一体式平板厌氧膜生物反应器处理酒厂废水的试验中,研究了污染物的去除效果和平板膜组件的运行、污染情况.试验结果表明,COD容积负荷为3~7 kg/(m3·d)、水力停留时间(HRT)为16 h时,平均COD去除率达94.2%;在膜通量为4.6 L/(m2·h)、上升流速为2.5 m/h的条件下,平板膜组件能够连续运行18~20 d;在该试验中临界通量和临界上升流速分别为10~15 L/(m2·h)和5.0m/h,平板膜组件应该在这两个临界值之下运行.膜过滤阻力分析测试结果表明,泥饼层阻力是总阻力的最大组成部分.  相似文献   

5.
膜生物反应器中膜污染的研究   总被引:2,自引:0,他引:2  
研究了膜生物反应器的膜污染过程中,膜平均通量的下降与污泥浓度之间的关系,发现在一定的膜面流速下,膜平均通量的下降与污泥浓度增加成对数关系;随着污泥浓度的增加,膜污染速度加快,泥饼阻力成为膜稳态通量的主要控制因素。  相似文献   

6.
好氧硝化颗粒污泥膜生物反应器性能和膜污染研究   总被引:4,自引:3,他引:1  
实验研究了好氧硝化颗粒污泥膜生物反应器AGMBR的处理性能,并将其与活性污泥膜生物反应器ASMBR进行对比,考察了颗粒污泥在减缓膜污染中所起的作用.好氧硝化颗粒污泥膜生物反应器AGMBR连续稳定运行102 d,系统具有良好的去除有机物和同时硝化反硝化能力,在进水COD和NH+4-N浓度分别为500和200 mg/L时,COD、NH+4-N和TN的去除率分别稳定在86%、94%和45%以上.颗粒污泥有效减缓了膜污染,延长了膜清洗的周期,AGMBR中的膜污染以膜孔堵塞为主,占总阻力的64.81%;滤饼层的阻力为2.1×1012m-1,远小于ASMBR中的16.07×10m-1;膜清洗周期是相同条件下ASMBR的2.43倍以上;而且AGMBR内不断有新颗粒生成,维持了AGMBR系统性能和运行的稳定.  相似文献   

7.
采用膜生物反应器进行含酚废水的处理,探讨投加好氧颗粒污泥对反应器中污泥性能的影响。结果表明,在膜生物反应器中投加好氧颗粒污泥能有效改善污泥性能,提高处理效果。从采用絮状污泥到逐渐增加好氧颗粒污泥投加量为100%的过程中,反应器中污泥浓度明显提高,MLSS由5 582 mg/L增加到8 168 mg/L;沉降性能得到改善,SVI由135.85 mL/g下降到29.36 mL/g;疏水性增强,Zeta电位由-20.302 mV升高到-4.325 mV;对含酚废水中COD、NH3-N的降解能力明显提高,COD、NH3-N、NO3-N去除率分别由87.3%、83.2%、55.3%增加到99.2%、94.9%、66.3%。改善了膜污染现象,膜通量衰减率由63.3%降低到42.8%。用二元多项式三维回归分析,得到污染物去除率关于好氧颗粒污泥投加量和反应器运行时间的二元方程,对指导好氧颗粒污泥膜生物反应器的连续运行具有重要意义。  相似文献   

8.
膜生物反应器次临界通量运行的膜污染特性研究   总被引:1,自引:1,他引:0  
膜生物反应器(MBR)是将膜分离与生物反应相结合的污水处理新工艺,近年来已引起广泛的关注,但不可避免的膜污染限制其更广泛的应用。临界通量在膜污染控制中是个非常重要的概念。本试验研究平板膜生物反应器在次临界通量运行下的膜污染状况,并结合膜污染模型进一步表征膜表面的污染特性。试验结果表明。该平板膜生物反应器在次临界通量运行的情况下,膜污染可分为膜污染缓慢发展阶段(第Ⅰ阶段)和膜污染迅速发展阶段(第Ⅱ阶段),可分别用膜孔堵塞模型和泥饼阻力模型表征膜阻力与时间的变化关系。同时,对运行后的膜阻力分布进行分析,表明泥饼阻力和孔道吸附堵塞阻力是膜污染的主要组成部分,分别占到总阻力的73%和24%,而膜本身阻力仅占3%。  相似文献   

9.
研究了复合式膜生物反应器(HMBR)中生化反应及膜自身对船舶生活污水中浓度较高的有机物的去除作用。当进水COD浓度为1 000 mg/L左右,反应器容积负荷为2.4 kg COD/(m3·d)时,HMBR曝气池内生化反应对COD的去除率平均可达91.63%,膜本身去除率平均为5.09%。可见,曝气池内生化反应对有机物的去除起到了主要作用,而膜则维持了系统出水水质的稳定。对曝气池内有机物降解动力学模型进行了研究,曝气池内有机物降解遵循一级反应,其相应动力学参数为vmax=2.79 d-1,Ks=395 mg/L,所得动力学方程可用于指导船用膜生物反应器的设计及运行维护。  相似文献   

10.
动态膜-生物反应器处理城市污水的运行特性研究   总被引:3,自引:0,他引:3  
考察了孔径108μm左右的不锈钢丝网动态膜组件处理城市生活污水的特性,并研究了出水水头和曝气强度对动态膜泥饼层形成的影响.结果表明,稳定运行情况下出水平均浊度1.2NTU,COD平均去除率90%,NH<,3>-N平均去除率97%,与传统膜-生物反应器处理效果接近.同时发现,在20、40mm的出水水头下,动态膜运行初期膜通量衰减规律均符合泥饼阻力模型.  相似文献   

11.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

12.
基于计算流体力学(CFD)方法,使用Eulerian多相流模型,对500 m3·d-1的膜生物反应器中曝气管布置方式以及4种气水比(10∶1、15∶1、20∶1和25∶1)进行优化研究,通过对不同反应器构型内部流场、速度场和膜面液体流速进行分析比较,同时借助停留时间分布(RTD)实验对模拟结果进行实验验证。结果表明:曝气管“对齐”布置方式优于“间隔”和“垂直”布置;考虑膜面冲刷以及能耗方面,确定最佳气水比为20∶1,此时反应器内形成了循环流动,膜面冲刷效果比较好,低速区占比较小,对降低膜污染有很好的作用。  相似文献   

13.
好氧MBR处理垃圾渗滤液中膜面优势污染物及污染阻力   总被引:1,自引:0,他引:1  
将好氧MBR处理垃圾渗滤液装置中的污泥混合液进行合理分离,通过死端过滤实验和膜污染阻力测定实验,以确定MBR中造成膜污染的优势污染物和优势污染阻力。实验结果表明,上清液中的胶体物质和大分子粘性有机物是造成膜污染的优势污染物;膜污染阻力主要由凝胶极化阻力和外部污染阻力构成,二者之和占总污染阻力的95%以上。  相似文献   

14.
本文就膜 -生物反应器中溶解性微生物产物的生成特性及其影响的研究进展进行了总结。在膜 -生物反应器中 ,膜的高效固液分离作用在提高系统容积负荷和出水水质的同时 ,也使生物反应器成为一个相对封闭的系统。以腐殖质、多糖、蛋白质等物质为主要成分的溶解性微生物产物是生物处理出水中溶解性TOC或COD的主要组成部分 ,主要产生于微生物的基质分解过程和内源呼吸过程 ,其高分子物质的含量较多且可生物降解性较差 ,因此 ,在膜 -生物反应器中会出现积累。溶解性微生物产物的过高积累不仅有可能降低膜过滤出水的水质稳定性 ,而且有可能影响污泥活性 ,并引起膜污染。进水浓度和污泥浓度是影响溶解性微生物产物产生量的重要因素。目前有关膜 -生物反应器中溶解性微生物产物的研究还很不完善 ,有很多问题需进一步研究  相似文献   

15.
近年来高效生物反应器得到不断发展,出现了多种新型生物反应器.从厌氧升流式生物反应器发展的经验和反应器的特点出发,提出了升流式反应器的结构、三相分离器的形式和污泥颗粒化现象等3个新概念是高效新型反应器的基础,进而在广义升流式污泥床反应器概念的基础上,提出具有传质效率高、处理能力强、有机负荷高以及抗冲击负荷能力强等优点的第三代高效生物反应器概念.  相似文献   

16.
采用一体化浸没式膜生物反应器处理生活污水,研究进水碱度对硝化过程和膜污染过程的影响。结果表明,碱度对膜生物反应器工艺的硝化过程影响较大;当碱度充足(224~510 mg/L)时,氨氮去除率达到98.6%,出水的pH基本稳定,当进水碱度不足时,氨氮去除率下降,出水的pH低于6,pH变化滞后于碱度的变化;进水碱度变化对COD去除影响不大,去除率稳定在91%以上;随着进水碱度下降,膜生物反应器内的胞外聚合物EPS由10 mg/g MLSS上升至26 mg/g MLSS,碱度充足时MBR运行周期最长可达10 d,当碱度不足引起反应器中的EPS浓度上升,导致膜污染加剧,膜生物反应器的运行周期下降到2 d。  相似文献   

17.
在流化床膜生物反应器中引用在线超声技术来控制膜污染,考察了在线超声对污泥混合液特性的影响,探讨了在线超声作用下的膜污染机制。结果表明:在线超声流化床膜生物反应器的跨膜压差(TMP)增长速度明显慢于普通流化床膜生物反应器,可延长膜清洗周期约51%。在线超声作用下,污泥平均粒径降低约70μm,污泥胞外聚合物(EPS)含量增加(14±5)mg/g,混合液溶解性微生物产物(SMP)有所降低;同时,在线超声使得污泥浓度和混合液粘度降低,从而改善了混合液的过滤性,有助于膜污染的控制。分析表明,在线超声能够减少膜表面不可逆污染的发生,膜的主要污染机制为泥饼层污染。  相似文献   

18.
为提高MBR的去除性能并延缓膜污染,采用复合型悬浮生物膜强化膜生物反应器(hybrid suspended biofilm enhanced membrane bioreactor, HSBE-MBR)处理生物制药废水,考察了填料添加方式对HSBE-MBR中典型污染物的去除特征、运行稳定性及膜污染特征的影响,并分析了膜污染机理。结果表明:缺氧区和好氧区添加填料时(工况1),TCOD、${{\rm{NH}}_4^ + }$-N和TN平均去除率分别为91.61%、97.08%和79.40%;缺氧区、好氧区及膜区添加填料时(工况2),TCOD、${{\rm{NH}}_4^ + }$-N和TN平均去除率分别为91.09%、97.24%和83.66%。在上述2种工况下,HSBE-MBR对TCOD、${{\rm{NH}}_4^ +} $-N和TN均具有良好的去除性能,且运行稳定性良好,工况2中TN去除率提高了4.26%。在工况1下,膜运行时间为0.02~8.17 d;在工况2下,膜运行时间为0.26~138 d。2种工况下的膜污染机理均以滤饼层污染为主,滤饼层阻力占比分别为94.7%和90.1%;膜区添加填料能够减缓膜表面滤饼层的形成,使滤饼层阻力降低8.07%;同时,混合液中溶解性微生物代谢产物(soluble microbial products, SMP)、松散结合EPS (loosely bound-EPS, LB-EPS)和紧密结合EPS (tightly bound-EPS, TB-EPS)浓度分别由(63.70±12.95)、(13.97±2.03)和(153.82±12.64) mg·g−1(工况1)降低为(31.77±3.17)、(9.11±0.40)和(78.12±18.92) mg·g−1(工况2)。粒度分布测定结果表明,膜区添加填料后,污泥平均粒径从31.35 μm(工况1)增大至34.71 μm(工况2)。根据污染物去除特征及膜污染特征,确定最优添加方式为在缺氧区、好氧区和膜区添加填料。上述研究结果可为提高MBR运行稳定性并改善膜污染提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号