首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gopal R  Rizvi AH 《Chemosphere》2008,70(9):1539-1544
To elucidate the deleterious effects of excess lead on radish (Raphanus sativus) cv. Jaunpuri plants were grown in refined sand in complete nutrient solution for 30 days. On the 31st day lead nitrate was superimposed at 0.1 and 0.5mM to radish for 65 days. A set of plants in complete nutrient solution was maintained as control for the same period without lead. Excess Pb at 0.5mM showed growth depression with interveinal chlorosis on young leaves at apex. Excess Pb reduced the fresh and dry weight pronouncedly at d 65. Lead accumulation reduced the concentration of chlorophyll, iron, sulphur (in tops), Hill reaction activity and catalase activity whereas increased the concentration of phosphorus, sulphur (in roots) and activity of peroxidase, acid phosphatase and ribonuclease in leaves of radish.  相似文献   

2.
Citrullus plants were grown in refined sand with varying levels of chromium to determine their tolerance limit to excess chromium. The plants were maintained in control nutrient solution for 24 days and on the 25th day chromium as dichromate was added at 0.05, 0.1, 0.2, 0.3 and 0.4 mM. A control set of plants was grown in the same nutrient solution without chromium. At chromium levels >0.2 mM plants showed growth depression, with chlorosis and loss of turgor of middle leaves. Affected leaves had narrow lamina; tendrils were thin, short and did not have coiling property. Later chlorosis became severe and changed to necrosis in patches. Petiole along with lamina became wilted, rugged and hung down due to complete loss of water. At lower chromium concentration, (0.05, 0.1 and 0.2 mM) only depression in growth was observed. With increase in chromium concentration of nutrient solution accumulation of chromium in different parts of Citrullus was increased. Increase in concentrations of phosphorus, manganese and decrease in iron, copper, zinc and sulphur were observed in leaves. Toxicity of chromium was greater at 0.2-0.4 mM, compared to lower concentrations. Threshold of toxicity and toxicity of Cr in old leaves were, respectively, 0.9 and 3.9 microg g(-1) dry matter of citrullus.  相似文献   

3.
To study the viability of detached leaf culture technique, studies were carried out with detached leaves from cotton apex (true trilobed leaves). The prepared leaves were sprayed with 2,4-D amine and ester, at rates of 10, 30, 70, and 100% of the recommended doses. Detached leaves without herbicide spray were used as controls. Simultaneously, a greenhouse experiment was conducted with the same treatments as used for the detached leaves experiment. Toxicity was measured through a 0-to-5 grading according to the percentage of affected leaf area in the detached leaves experiment or examining the affected rate of whole plant as indicated in the greenhouse. Results showed that the ester form of the herbicide induced earlier and more severe toxicity symptoms in detached leaves and greenhouse grown plants. Positive and significant correlations (p < 0.001) were found between toxicity results obtained at 7 and 14 days after application in detached leaves and greenhouse plants (r = 0.97 and 0.92, respectively). Negative, significant correlations (p < 0.005) were found between the toxicity levels found at 7 and 14 days after application in detached leaves and dry matter of cotton plants grown in the greenhouse (r= - 0.92 and -0.92, respectively).  相似文献   

4.
Kumar A  Prasad MN  Sytar O 《Chemosphere》2012,89(9):1056-1065
Talinum species have been used to investigate a variety of environmental problems for e.g. determination of metal pollution index and total petroleum hydrocarbons in roadside soils, stabilization and reclamation of heavy metals (HMs) in dump sites, removal of HMs from storm water-runoff and green roof leachates. Species of Talinum are popular leaf vegetables having nutrient antinutrient properties. In this study, Talinum triangulare (Jacq.) Willd (Ceylon spinach) grown hydroponically were exposed to different concentrations of lead (Pb) (0, 0.25, 0.5, 0.75, 1.0 and 1.25 mM) to investigate the biomarkers of toxicity and tolerance mechanisms. Relative water content, cell death, photosynthetic pigments, sulphoquinovosyldiacylglycerol (SQDG), anthocyanins, α-tocopherol, malondialdehyde (MDA), reactive oxygen species (ROS) glutathione (GSH and GSSG) and elemental analysis have been investigated. The results showed that Pb in roots and shoots gradually increased as the function of Pb exposure; however Pb concentration in leaves was below detectable level. Chlorophylls and SQDG contents increased at 0.25 mM of Pb treatment in comparison to control at all treated durations, thereafter decreased. Levels of carotenoid, anthocyanins, α-tocopherol, and lipid peroxidation increased in Pb treated plants compared to control. Water content, cells death and elemental analysis suggested the damage of transport system interfering with nutrient transport causing cell death. The present study also explained that Pb imposed indirect oxidative stress in leaves is characterized by decreases in GSH/GSSG ratio with increased doses of Pb treatment. Lead-induced oxidative stress was alleviated by carotenoids, anthocyanins, α-tocopherol and glutathione suggesting that these defense responses as potential biomarkers for detecting Pb toxicity.  相似文献   

5.
Abstract

To study the viability of detached leaf culture technique, studies were carried out with detached leaves from cotton apex (true trilobed leaves). The prepared leaves were sprayed with 2,4-D amine and ester, at rates of 10, 30, 70, and 100% of the recommended doses. Detached leaves without herbicide spray were used as controls. Simultaneously, a greenhouse experiment was conducted with the same treatments as used for the detached leaves experiment. Toxicity was measured through a 0-to-5 grading according to the percentage of affected leaf area in the detached leaves experiment or examining the affected rate of whole plant as indicated in the greenhouse. Results showed that the ester form of the herbicide induced earlier and more severe toxicity symptoms in detached leaves and greenhouse grown plants. Positive and significant correlations (p < 0.001) were found between toxicity results obtained at 7 and 14 days after application in detached leaves and greenhouse plants (r = 0.97 and 0.92, respectively). Negative, significant correlations (p < 0.005) were found between the toxicity levels found at 7 and 14 days after application in detached leaves and dry matter of cotton plants grown in the greenhouse (r = ?0.92 and ?0.92, respectively).  相似文献   

6.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   

7.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

8.
The release of boron-laden mist from the cooling towers of some geothermal power stations in northern California potentially threatens nearby populations of the rare serpentine plant, Streptanthus morrisonii F. W. Hoffm. To assess the tolerance of S. morrisonii to high levels of boron, the effect of boron on leaf condition, life history, germination rate, growth rate, allocation and photosynthesis was measured on plants grown in a greenhouse. Relative to other species, S. morrisonii was tolerant of excess boron. On serpentine soil, mild to moderate toxicity symptoms (older leaves exhibiting chlorosis and necrosis, but few leaves killed) were apparent when the boron concentration in applied nutrient solutions was 240-650 microm. Severe toxicity symptoms (significant leaf loss, young leaves with toxicity symptoms) were apparent when the applied solution was over 1000 microm boron. Above 1000 microm boron, S. morrisonii appeared unable to complete its life cycle. On a tissue basis, boron toxicity was first observed when leaf boron content was 40-90 micromol g(-1) dry weight. In leaves with severe boron toxicity (> 35% injury), the boron content was generally above 130 micromol g(-1) dry weight. These levels were an order of magnitude above the tissue boron content of plants in the field. Prior to the onset of pronounced boron toxicity symptoms, growth rate, allocation patterns, and photosynthesis were unaffected by high boron. These results indicate that inhibition of growth and photosynthesis occurred because of a loss of viable tissue due to boron injury, rather than a progressive decline as leaf boron levels increased.  相似文献   

9.
The effect of increasing application of zinc (Zn) and cadmium (Cd) on shoot dry weight and shoot concentrations of Zn and Cd was studied in bread and durum wheat cultivars. Plants were grown in severely Zn-deficient calcareous soil treated with increasing Zn (0 and 10 mg kg(-1) soil) and Cd (0, 10 and 25 mg kg(-1) soil) and harvested after 35 and 65 days of growth under greenhouse conditions. Growing plants without Zn fertilization caused severe depression in shoot growth, especially in durum wheat and at high Cd treatment. Cadmium treatments resulted in rapid development of necrotic patches on the base and sheath parts of the oldest leaves of both wheat cultivars, but symptoms were more severe in durum wheat and under Zn deficiency. Decreases in shoot dry weight from increasing Cd application were more severe in Zn-deficient plants. Severity of Cd toxicity symptoms in durum and bread wheat at different Zn treatments did not show any relation to the Cd concentrations in shoot. Increasing Cd application to Zn-deficient plants tended to decrease Zn concentrations in Zn-deficient plants, whereas in plants with adequate Zn, concentrations of Zn were either not affected or increased by Cd. The results show that durum wheat was more sensitive to both Zn deficiency and Cd toxicity as compared to bread wheat. Cadmium toxicity in the shoot was alleviated by Zn treatment, but this was not accompanied by a corresponding decrease in shoot concentrations of Cd. Our results are compatible with the hypothesis that Zn protects plants from Cd toxicity by improving plant defense against Cd-induced oxidative stress and by competing with Cd for binding to critical cell constituents such as enzymes and membrane protein and lipids.  相似文献   

10.
Tobacco plants transformed with TaLCT1 were cultured on Knop's medium with modified calcium concentrations (0.01-3 mM) in the presence of Pb(2+), and in soil contaminated by lead. A 4-5 microM Pb(2+) administered in the presence of 1 mM Ca(2+) inhibited the root growth of transgenic plants to much lesser degree than of control plants, whereas in the presence of 3mM Ca(2+) no differences were found between the studied lines. The reduction of Pb(2+) toxicity in the presence of 1 mM Ca(2+) was not accompanied by a change in the lead tissue concentration. However, when Ca(2+) level in the medium was lowered to 0.01 mM, several fold higher root/shoot Pb ratio in transgenic plants was observed, twofold increase in the total amount of metal accumulated, and lower concentration of Pb in the xylem sap. Results suggest the involvement of TaLCT1 in the regulation of Ca-dependent Pb-detoxification, and under conditions of low calcium in lead uptake and distribution.  相似文献   

11.
The response of tobacco plants (Nicotiana tabacum L.)--non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L.--to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 microM CdCl(2) resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 microM CdCl(2) led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants.  相似文献   

12.
Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium   总被引:1,自引:0,他引:1  
The ability of Allium schoenoprasum L. (chives) to accumulate and tolerate cadmium in aqueous Hoagland medium at 50microM and 250microM was tested under continuous growth or several successive harvests of shoots. After 28 days of continuous growth, chives accumulated the metal up to 0.2% and 0.5% of its dry weight, when grown in 50microM and 250microM, respectively. In experiments that the leaves were successively harvested every 16 days, there were no obvious stress symptoms after six harvests during a period of 96 days at 50microM Cd. At 250microM, after 64 days and four harvests, inhibition of growth occurred. In each treatment, a total of 1.2g kg(-1) DW and 2.4g kg(-1) DW was accumulated in the leaves, respectively. Total SH compounds concentration in leaf was found significantly higher by 3 and 7.4 times in plants treated with Cd at 50microM and 250microM in comparison to the control, respectively, while no difference in the concentration of glutathione (GSH+GSSG) was found. Thus, it is assumed that sulphur-containing compounds, yet unknown, are involved in defensive mechanisms against heavy metals in chives. The results presented, point to chives phytoremediation potential, but also on the potential risk in accumulation of heavy metals in a commonly edible plant.  相似文献   

13.
Zinc (Zn) is a necessary element for plants, but excess Zn can be detrimental. To investigate Zn toxicity, rapeseed (Brassica napus) seedlings were treated with 0.07–1.12 mM Zn for 7 d. Inhibition of plant growth along with root damage, chlorosis and decreased chlorophyll (a and b) content in newly expanded leaves (the second and third leaves formed following cotyledons) were found under Zn stress. The Zn content increased in plants under external Zn stress, while concentrations of phosphorus, copper, iron, manganese and magnesium reduced significantly, especially in roots. Meanwhile, increased lipid peroxidation was detected biochemically and histochemically. Compared with controls, NADH oxidase and peroxidase (POD) activity increased in leaves and roots of plants under high Zn, but superoxide dismutase (SOD), catalase and ascorbate peroxidase activities decreased. The changes in glutathione S-transferase activity and in ascorbic acid, dehydroascorbate, non-protein thiols and glutathione contents were also measured under Zn stress. Isoforms of SOD and POD were separated using non-denaturing polyacrylamide gel electrophoresis and their activities were analyzed. Our results suggested that excess Zn exerts its toxicity partially through disturbing nutrient balance and inducing oxidative stress in plants. These data will be helpful for better understanding of toxicity of Zn and the adaptive mechanism in Zn non-hyperaccumulator plants.  相似文献   

14.
The main aim of the study was to determine the role of calcium in the amelioration of lead toxic effects in plants with accordingly high/low level of Pb-tolerance and high/low Ca-deficiency tolerance. The study was performed on maize, rye, tomato and mustard. Plants were cultivated in modified Knop's solution. They were subjected to Ca-deficiency, and to lead nitrate administered in the presence of four calcium nitrate concentrations 3.0, 2.4, 1.2, 0.3mM. Lead-tolerance and tolerance to Ca-deficiency were determined, as were concentration of the studied elements in plant tissues, and the Pb deposition pattern at the ultrastructural level (electron microscopy study, X-ray microanalysis). In all studied plants, lead toxicity increased as medium calcium content decreased, however, only in the Ca-deficiency sensitive mustard with low Pb-tolerance was it accompanied by a rise in tissue lead concentration. In contrast, lead root and shoot levels did not increase in the highly Ca-deficiency tolerant tomato, mustard and rye with high Pb-tolerance irrespective of the Ca(2+) regimens applied. Thus, in these plants, lead's unfavourable effects resulted only from the higher toxicity of the same amount of lead in tissues at low calcium in the medium. Of particular relevance is the finding by electron microscopy and X-ray microanalysis, that under low calcium in both highly Ca-deficiency tolerant and Ca-deficiency sensitive plants, less efficient Pb(2+) detoxification was accompanied by the restriction of the formation of large lead deposits in cell walls. Obtained results are novel in demonstrating calcium involvement in the lead deposition in the cell wall, thus in the regulation of the internal lead detoxification.  相似文献   

15.
The inhibition of seedling growth and nitrate reductase activity in 5 d old Vigna radiata (L.) Wilczek cv. Pusa Baisakhi in the presence of 1.0 mM lead acetate increased drastically, if NaCl (6 and 12 EC) was also present in the nutrient media along with the metal salt. Correspondingly higher endogenous Na+ levels were accumulated in the roots and leaves of seedlings in presence of the two stresses. On the other hand, the levels of endogenous lead get reduced in presence of NaCl in both the roots and leaves. Roots accumulated more Pb2+ and Na+ than the leaves. The two stresses affect more drastically in the additive or even synergistic manner during the early growth phase of the seedlings.  相似文献   

16.
Abstract

Cadmium (Cd) has no known essential biological function, but it is toxic to plants, animals, and humans. A promising approach to prevent Cd from entering the food chain would be to select and/or create Cd‐accumulating plants to remediate contaminated soils or to develop Cd‐excluding plants to reduce Cd flow from soils into foods. The present study was undertaken to examine the differences in Cd influx, transport, and accumulation among five plant species in relation to plant tolerance to Cd toxicity. Ryegrass (Lolium perenne L.) had the least reduction in dry matter which may be due to its lowest Cd transport rate (TR) to shoots at all Cd levels among the plant species tested. White‐clover (Trifolium repens L.) was the most sensitive species to Cd toxicity, likely because of its highest Cd influx rate (IR) and high TR when plants were grown at low Cd2+ activity (≤8 μM). The high tolerance of cabbage (Brassica oleracea var. capitata L.) to moderate Cd toxicity (≤14 μM) appeared to be mainly due to the detoxification of Cd inside plant tissue since it recorded the highest TR and relatively high IR for Cd among the tested species. At Cd2+ activities up to 28 uM, the Cd uptake ratios of shoot/root for ryegrass were, on average, about 50‐fold and 27‐fold lower than that for cabbage and maize (Zea mays L.), respectively. These results showed that Cd could be easily transported into shoots of cabbage and maize, but was mainly confined to roots of ryegrass. We suggest that influx and transport rates, especially transport rate, could be used as plant physiological parameters for screening Cd‐excluding genotypes among monocotyledonous plants.  相似文献   

17.
The toxicity of ammonia to Hyalella azteca at constant pH in artificial media was controlled by sodium and potassium, and not by calcium, magnesium, or anions. Small increases in the LC50 for total ammonia (from 0.15 to 0.5 mM) occurred as sodium was increased from 0.1 to 1 mM and above, but major increases in the LC50 (to over 10 mM total ammonia) required the addition of potassium. Potassium was, however, more effective at reducing ammonia toxicity at high (1 mM) sodium than at low (0.1 mM) sodium. Ammonia toxicity was independent of pH at low sodium and potassium concentrations, when ammonia toxicity appeared to be associated primarily with aqueous ammonium ion concentrations. At high sodium and potassium concentrations, the toxicity of ammonia was reduced to the point where un-ionized ammonia concentrations also affected toxicity, and the LC50 became pH dependent. A mathematical model was produced for predicting ammonia toxicity from sodium and potassium concentrations and pH.  相似文献   

18.
Song NH  Yin XL  Chen GF  Yang H 《Chemosphere》2007,68(9):1779-1787
Chlorotoluron is a phenylurea herbicide that is widely used for controlling grass weeds in the land of cereal, cotton and fruit production. However, extensive use of this herbicide may lead to its accumulation in ecosystems, thus inducing the toxicity to crops and vegetables. To assess chlorotoluron-induced toxicity in plants, we performed the experiment focusing on the metabolic adaptation of wheat plants (Triticum aestivum) to the chlorotoluron-induced oxidative stress. The wheat plants were cultured in the soils with chlorotoluron at concentrations of 0-25mg/kg. Chlorotoluron accumulation in plants was positively correlated with the external chlorotoluron concentrations, but negatively with the plant growth. Treatment with chlorotoluron induced the accumulation of O(2)(-) and H(2)O(2) in leaves and resulted in the peroxidation of plasma membrane lipids in the plant. We measured the endogenous proline level and found that it accumulated significantly in chlorotoluron-exposed roots and leaves. To understand the biochemical responses to the herbicide, activities of the antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) revealed that there were three isoforms in the roots and leaves, but the isoforms in the tissues showed different patterns. Also, using the native PAGE, 6 isoforms of root POD and 10 in leaves were detected. The total activity of POD in roots was significantly enhanced. Activities of APX in roots and leaves showed a similar pattern. The CAT activities were generally suppressed under the chlorotoluron exposure.  相似文献   

19.
Tomato and lettuce plants were exposed to vapour of the free acid of [14C-phenyl] 2,4-D at concentrations in the range 1-600 pg litre(-1) for periods of 6, 24 or 72 h. The rate of uptake of radiolabel by tomato was about twice that by lettuce at the same vapour concentration. Uptake rates were linearly related to external vapour concentration. The relationship between uptake and vapour concentration of 2,4-D for the two species was similar to published values for the butyl and iso-octyl esters. The distribution of herbicide residue in the plant immediately after exposure indicated that the apical leaves of lettuce are particularly active in assimilating vapour, whereas for tomato, leaf position had no influence. Forty days after exposure, both species showed symptoms of toxicity and reduction in shoot dry weight typical of similar doses of 2,4-D esters. It is concluded that the vapour of 2,4-D represents a potential hazard to susceptible plants, and that further work is needed to determine the conditions likely to lead to the production of vapour of the free acids of phenoxyalkanoic herbicides following spraying.  相似文献   

20.
Comparative study of responses in four Datura species to a zinc stress   总被引:2,自引:0,他引:2  
The effects of zinc toxicity on the growth and the photosynthetic activities of four Datura species (Datura metel, Datura innoxia, Datura sanguinea, Datura tatula) were studied using various ZnSO4 concentrations (0, 1, 2.5 and 5 mM) added in the Coic Lessaint solution. Growth, photosynthesis, chlorophyll fluorescence and chlorophyll concentration were measured after 20 days of zinc stress. These parameters were severely reduced by this heavy metal. The zinc excess involves the stomate closing, the increase of CO2 concentration in the leaves, the inhibition of certain enzyme of the Calvin cycle, a degradation of photosystem and the chlorophyll decomposition. These phenomena allow the decrease of the net photosynthesis to be partially explained. These key parameters to assess photosynthetic performance allow the plants to be classified according to their resistance to zinc. Compared with the three other species, D. innoxia showed a very strong capacity to protect itself against toxic zinc concentrations; a large amount of ZnSO4 (5 mM) was required to inhibit 43% of the photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号