首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The combined effects of temperature, light and symbiont density on the metabolic rate and calcification of the temperate coral Astrangia danae were studied experimentally using colonies containing different concentrations of zooxanthellae. After acclimation to five temperatures between 6.5° and 27°C, and incubation at three light levels and in darkness, respiration and photosynthesis were measured and corrected for rates due to commensals alone. Calcification rates were regressed on zooxanthellae concentration and production in order to define “symbiotic” and “non-symbiotic” averages, and the enhancement of calcification by symbiotic interactions in the polyps. Respiration by the polyparium varied less with temperature between 11.5° and 23°C than that of the commensals, suggesting physiological acclimation by the coral tissue. In-vivo zooxanthellae photosynthesis increased linearly with temperature and was near its maximum at 400 μEin m?2 s?1, but the photosynthesis of the endolithic algae of the corallum varied little between 11.5° and 27°C. Calcification at any given temperature was near its maximum at 40 μEin m?2 s?1 in both symbiotic and non-symbiotic corals. CaCO3 deposition increased linearly with temperature in non-symbiotic colonies and in symbiotic colonies incubated in the dark. In symbiotic colonies, calcification in the light increased above these basic rates as temperature rose above 15°C. Below 15°C, symbiotic interactions failed to stimulate calcification, apparently due both to a lowering of zooxanthellae photosynthesis and to a decrease in the enhancing effect of any given level of primary production.  相似文献   

2.
Increasing dissolution of anthropogenic-released carbon dioxide into the world’s oceans is causing ocean acidification (OA). OA is thought to negatively affect most marine-calcifying organisms, notably cold-water corals (CWC), which may be especially sensitive due to the deep and cold waters they normally thrive in. However, the impact of OA on CWC is difficult to predict. Recorded distributions of CWC are rarely linked to in situ water chemistry, and the boundaries of their distributions are not clearly defined. The fjord Comau in Chilean Patagonia features pronounced pH gradients, and up to 0.5 pH units have been recorded both vertically (at some sites within 50 m depth) and less distinct horizontally (from head to mouth). The cosmopolite coral Desmophyllum dianthus grows along the course of the fjord and of the entire pH range. It occurs in shallow depths (below 12 m, pH 8.1) as part of a deep-water emergence community, but also in 225 m depth at a pH of 7.4. Based on pH and total alkalinity, data calculations of the associated carbonate chemistry revealed that this CWC thrives commonly close the aragonite (the orthogonal crystal form of calcium carbonate, the mineral structure of coral skeletons) saturation horizon and even below. This suggests a high adaptation potential of D. dianthus to adjust its calcification performance to conditions thermodynamically unfavourable for the precipitation of aragonite.  相似文献   

3.
The estimated daily intakes (EDIs) of six trace elements (Cu, Zn, Pb, Cd, Hg, and As) in vegetables (leafy vegetable, i.e., bok choy, fruit vegetables, i.e., cucumber and tomato, and other categories, i.e., mushroom, kidney bean, and potato), cereals (rice and wheat flour), and meats (pork, mutton, and beef) most commonly consumed by adult inhabitants of Qiqihar, Northeastern China, were determined to assess the health status of local people. The average EDIs of Cu, Zn, Pb, Cd, Hg, and As were with 20.77 μg (kg bw)?1 day?1 of Cu, 288 μg (kg bw)?1 day?1 of Zn, 2.01 μg (kg bw)?1 day?1 of Pb, 0.41 μg (kg bw)?1 day?1 of Cd, 0.01 μg (kg bw)?1 day?1 of Hg, and 0.52 μg (kg bw)?1 day?1 of As, respectively, which are below the daily allowance recommended by FAO/WHO. However, the maximum EDIs of Pb and Cd were 4.56 μg (kg bw)?1 day?1 and 1.68 μg (kg bw)?1 day?1, respectively, which are above the recommended levels [i.e., 3.58 μg (kg bw)?1 day?1 for Pb and 1.0 μg (kg bw)?1 day?1 for Cd] by FAO/WHO. This finding indicates that the potential health risk induced by daily ingestion of Pb and Cd for the local residents should receive a significant concern. Similarly, we detected elevated Pb and Cd concentrations, i.e., with average of 13.58 and 0.60 mg kg?1 dw, respectively, in the adult scalp hairs. Consumption of rice, potato, bok choy, and wheat flour contributed to 75 and 82% of Pb and Cd daily intake from foodstuffs. Nevertheless, human scalp hair is inappropriate biological material for determination of the nutritional status of trace elements in this region.  相似文献   

4.
Regions of high primary production along the oligotrophic west coast of Australia between 34 and 22°S in May–June 2007 (midway through the annual phytoplankton bloom) were found around mesoscale features of the Leeuwin Current. At 31°S, an anticyclonic eddy-forming meander of the Leeuwin Current had a mixed layer depth of >160 m, a depth-integrated chlorophyll a (Chl a)-normalised primary production of 24 mg C mg Chl a ?1 day?1 compared to the surrounding values of <18 mg C mg Chl a ?1 day?1. In the north between 27 and 24°S, there were several stations in >1,000 m of water with a shallow (<100 m) and relatively thin layer of high nitrate below the mixed layer but within the euphotic zone. These stations had high primary production at depths of ~100 m (up to 7.5 mg C m?3 day?1) with very high rates of production per unit Chl a (up to 150 mg C mg Chl a ?1 day?1). At 27–24°S, the majority of the phytoplankton community was the ubiquitous tropical picoplankters, Synechococcus and Prochlorococcus. There was a decline in the dominance of the picoplankters and a shift towards a more diverse community with more diatoms, chlorophytes, prasinophytes and cryptophytes at stations with elevated production. Photosynthetic dinoflagellates were negligible, but heterotrophic dinoflagellate taxa were common. Haptophytes and pelagophytes were also common, but seemed to contribute little to the geographical variation in primary production. The mesoscale features in the Leeuwin Current may have enhanced horizontal exchange and vertical mixing, which introduced nitrate into the euphotic zone, increasing primary production and causing a shift in phytoplankton community composition in association with the annual winter bloom.  相似文献   

5.
Results from controlled in situ experimentation conducted on the leeward reef tract of Curaçao, Netherlands Antilles, indicate that the coral Montastraea annularis exhibits a complex, yet consistent, cellular response to increasing sea surface temperature (SST) and decreasing irradiance. This was determined by simultaneously quantifying and tracking the tissue density of zooxanthellae and mucocytes using a novel technique that integrates the lectin histochemical stain wheat germ agglutinin (WGA) with high-resolution (200 nm) optical epifluorescence microscopy. Coral colonies growing at 6-m water depth (WD) and an irradiance of 100.2 ± 6.5 μmol m?2 s?1 were treated with a shading experiment for 11 days that reduced irradiance to 34.9 ± 6.6, 72.0 ± 7.0 and 90.1 ± 4.2 μmol m?2 s?1, respectively. While a significant decrease in the density of both zooxanthellae and mucocytes were observed at all shade levels, the largest reduction occurred between the natural non-shaded control (44,298 ± 3,242 zooxanthellae cm?2; 4,853 ± 346 mucocytes cm?2) and the highest shading level (13,982 ± 1,961 zooxanthallae cm?2; 2,544 ± 372.9 mucocytes cm?2). Colonies were also sampled during a seasonal increase in SST of 1.5°C, where the density of zooxanthellae was significantly lower (from 54,710 ± 1,755 to 34,322 ± 2,894 cells cm?2) and the density of mucocytes was significantly higher (from 6,100 ± 304 to 29,658 ± 3,937 cells cm?2). These observations of coral cellular response to environmental change provide evidence to support new hypotheses for coral survival and the complex role played by mucus in feeding, microbial associations and resilience to increasing SST.  相似文献   

6.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

7.
Extant sirenians are restricted to warm waters, presumably due to their low metabolism and poor thermoregulatory capacity, including thin blubber. When subjected to winter waters, Florida manatees (Trichechus manatus latirostris) migrate to warm areas, but dugongs (Dugong dugon) do not and instead live year-round in winter waters as cool as 15–18 °C. Dugongs appear to be more active than manatees and may have higher metabolic rates, but little is known about thermal energetics or the insulative properties of their integument. This study investigated the physical and thermal properties of whole samples of dugong integument, i.e. epidermis, dermis and hypodermis (blubber) sampled from fresh dugong carcasses collected from 2004 to 2012 in Moreton Bay (27.21°S, 153.25°E). Physico-chemical properties (thickness, density and lipid content) of each component tissue layer were measured. Thermal conductance (C) and conductivity (k) were measured for each tissue layer through in vitro temperature flux experiments within an insulated chamber. C and k were higher for dermis (25.7 ± 1.2 W m?2 K?1, 0.43 ± 0.02 W m?1 K?1, respectively, n = 21) than blubber (24.3 ± 2.4 W m?2 K?1, 0.31 ± 0.01 W m?1 K?1, n = 21), suggesting that blubber, with higher density and lipid content, affords better insulation. However, because the dermis contributes 65 % of integumentary thickness, both layers contribute significantly to insulation. The integument of dugongs is a poorer insulator compared to many cold-water marine mammals, but the greater thickness of its dermal layer means that despite its relatively thin blubber, its integumentary insulation is similar to warm-water dolphins of similar body size.  相似文献   

8.
Using 45Ca incorporation into the coral skeleton as a measure of calcification rate, the effect of temperature on clacification rate was studied in the hermatypic coral Pocillopora damicornis. Both immediate and long-term (adaptation) effects were investigated. Temperature has a marked effect on rate — an effect that varies depending on the temperature history of the coral (i.e., temperature adaptation occurs). P. damicornis showed both 27° and 31°C temperature optima, one or the other being dominant depending on the natural water temperature to which the coral was adapted. The two optimum temperatures may indicate two isoenzymes or two alternate metabolic pathways involved in the calcification process.  相似文献   

9.
Four different methods were used in the control conditions of laboratory to estimate the ingestion rate of a female meiobenthic harpacticoid copepod Amonardia normani: (1) reduction of algal biomass, (2) the quantification of total pigments in fecal pellets, (3) the gut fluorescence method, (4) the percentage of assimilation and the total egestion rate. The food used during all experiments was the diatom Nitzschia constricta in an axenic condition at the concentration of 0.13 μg Chl-a mL?1 at stationary growth phase. All experiments were made at 20 °C and 30 salinity. All tested methods excepted the quantification of total pigments in fecal pellets resulted in similar estimatives. The gut fluorescence method indicated that during the day gut contents are smaller than during the night but the gut passage time was faster, resulting in similar ingestion rates during the day and the night. The reduction of algal biomass and the percentage of assimilation and the total egestion rate also indicated similar ingestion rates in the day and in the night. The daily ingestion rate represents 107 % of female carbon weight per day (903 ng C cop?1day?1).  相似文献   

10.
The impact of elevated CO2 and temperature on photosynthesis and calcification in the symbiont-bearing benthic foraminifer Marginopora vertebralis was studied. Individual specimens of M. vertebralis were collected from Heron Island on the southern Great Barrier Reef (Australia). They were maintained for 5 weeks at different temperatures (28, 32 °C) and pCO2 (400, 1,000 µatm) levels spanning a range of current and future climate-change scenarios. The photosynthetic capacity of M. vertebralis was measured with O2 microsensors and a pulse-amplitude-modulated chlorophyll (Chl) fluorometer, in combination with estimates of Chl a and Chl c 2 concentrations and calcification rates. After 5 weeks, control specimens remained unaltered for all parameters. Chlorophyll a concentrations significantly decreased in the specimens at 1,000 µatm CO2 for both temperatures, while no change in Chl c 2 concentration was observed. Photoinhibition was observed under elevated CO2 and temperature, with a 70–80 % decrease in the maximum quantum yield of PSII. There was no net O2 production at elevated temperatures in both CO2 treatments as compared to the control temperature, supporting that temperature has more impact on photosynthesis and O2 flux than changes in ambient CO2. Photosynthetic pigment loss and a decrease in photochemical efficiency are thus likely to occur with increased temperature. The elevated CO2 and high temperature treatment also lead to a reduction in calcification rate (from +0.1 to >?0.1 % day?1). Thus, both calcification and photosynthesis of the major sediment-producing foraminifer M. vertebralis appears highly vulnerable to elevated temperature and ocean acidification scenarios predicted in climate-change models.  相似文献   

11.
Intertidal rocky shores are characterized by vertical zonation that results from the interplay between environmental conditions, organism physiology, and species interactions. Metabolism of intertidal organisms is highly variable between species and it changes with vertical position along the intertidal gradient. The present study aimed to quantify the carbon metabolism of nine intertidal rocky shore gastropods, in order to clarify their respective roles in carbon production during emersion and immersion. The influences of monthly temperature variation and tidal level were tested for each species. Analyses were performed in the laboratory using the infrared gas analyzer method for measuring aerial respiration rates, and the dissolved inorganic carbon and total alkalinity technique for measuring aquatic respiration rate and calcification. Hourly carbon fluxes were calculated for the mean annual temperature of 13 °C measured in both air and underwater in the study area. Respiration rates were similar for emersion (8–25 μmol COg AFDW?1 h?1) and immersion (10–23 μmol DIC g AFDW?1 h?1). For all species, underwater respiration fluxes were more influenced by monthly temperature variation than by air fluxes, probably as an adaptation to the rapid changes occurring during emersion. Calcification was an important factor influencing annual carbon fluxes for all studied species; every species showed different calcification rates according to its size and position on the intertidal zone. Annual carbon emissions were calculated using the mean immersion/emersion time of each species. Intertidal gastropod carbon emission was primarily influenced by body biomass and their vertical position within the intertidal zone.  相似文献   

12.
Brown shrimp (Crangon crangon, L.) are subjected to a huge annual temperature range, and certain thermal conditions during winter have been identified to affect the brown shrimp population. Despite that, little is known about its thermal biology with regard to critically low temperatures. In the present study, we determined the critical thermal minima (CTmin) and the critical lethal minima (CLmin) of male and female brown shrimp of different body sizes in laboratory-based experiments. For the CTmin trials, shrimp were acclimated to 4.0, 9.0, and 14.0 °C and exposed to a cooling rate of ?0.2 °C min?1. In the CLmin trials, brown shrimp were exposed to a cooling rate of ?1.0 °C day?1 without prior thermal acclimation. Acclimation temperature significantly affected the temperature tolerance of brown shrimp (p < 0.001). CTmin among the experimental groups just varied slightly, and no clear effect of gender or body size was observed. In the CLmin trials, brown shrimp even tolerated the coldest temperature of ?1.7 °C that could be established in the experimental setup. However, we observed a negative relationship between temperature and reactivity within the range of 7.0 and 1.0 °C that was determined by means of the flicking response. This relationship suddenly broke between 1.0 and 0.0 °C where an abrupt drop in the reactivity of the shrimp became apparent. The results of this study revealed that brown shrimp hold a wider thermal range as originally reported and that it can cope with subzero temperatures. Implications of low-temperature tolerance are discussed in the context of the brown shrimp’s ecology as well as stock assessment.  相似文献   

13.
A bacterial strain capable of degrading carbofuran as the sole carbon source was isolated from carbofuran-phytoremediated rhizosphere soil of rice. A 16S rRNA study identified the strain as Burkholderia sp. (isolate PCL3). Free cells of isolate PCL3 possessed inhibitory-type degradation kinetics with a q max of 0.087 day?1 and S m of 248.76 mg·L?1. Immobilised PCL3 on corncob and sugarcane bagasse possessed Monod-type degradation kinetics with a q max of 0.124 and 0.098 day?1, respectively. The optimal pH and temperature with the highest degradation rate coefficient of carbofuran were pH 7.5 and 35 °C, respectively.  相似文献   

14.
Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors—including pCO2—significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.  相似文献   

15.
In summer 1998, shallow water corals at Sesoko Island, Japan (26°38′N, 127°52′E) were damaged by bleaching. In August 2003, partially damaged colonies of the massive Porites lutea and the branching P. cylindrica were collected at depths of 1.0–2.5 m. The species composition of epilithic algal communities on dead skeletal surfaces of the colonies (‘red turfs’, ‘green turfs’, ‘red crusts’) and the endolithic algae (living in coral skeletons) growing close to and away from living coral polyps was determined. Carbon and nitrogen stable isotope values of organic matter (δ13C and δ15N) from all six of these biological entities were determined. There were no significant differences in the isotope composition of coral tissues of the two corals, with P. lutea having δ13C of −15.3 to −9.6‰ and δ15N of 4.7–6.1‰ and P. cylindrica having similar values. Polyps in both species living close to an interface with epilithic algae had similar isotope values to polyps distant from such an interface. Despite differences in the relative abundance of the algal species in red turfs and crusts, their δ13C and δ15N values were not significantly different from each other (−18.2 to −13.9, −20.6 to −16.2, 1.1–4.3, and 3.3 to 4.9‰, respectively). The green algal turf had significantly higher δ13C values (−14.9 to −9.3‰) than that of red turfs and crusts but similar δ15N (1.2–4.1‰) to the red algae. The data do not suggest that adjoining associations of epilithic algae and coral polyps exchange carbon- and nitrogen-containing metabolites to a significant extent. The endolithic algae in the coral skeletons had δ13C values of −14.8 to −12.3‰ and δ15N of 4.0–5.4‰. Thus they did not differ significantly from the coral polyps in their carbon and nitrogen isotope values. The similarity in carbon isotope values between the coral polyps and endolithic algae may be attributed to a common source of CO2 for zooxanthellae and endolithic algae, namely, from respiration by the coral host. While it is difficult to fully interpret similarity in the nitrogen isotope composition of coral tissue and of green endolithic algae and the difference in δ15N between green epilithic and endolithic algae, the data are consistent with nitrogen-containing metabolites from the scleractinian coral serving as a significant source of nitrogen for the endolithic algae.  相似文献   

16.
The present study addresses the ecology of two dominant copepod species in the Bay of Morbihan, Kerguelen Archipelago. The biomass of the herbivore Drepanopus pectinatus (from 2 mg m?3 in winter up to 500 mg m?3 in summer) is tightly coupled to seasonal changes in chlorophyll a concentration in the region, whereas the biomass of the predatory euchaetiid Paraeuchaeta antarctica increases during two distinct periods over the year: 250 mg m?3 in early summer, with the recruitment of the annual generation, and 100 mg m?3 in autumn, with the deposition of lipids as energy reserves in C5 stages and adults. The juvenile growth rates predicted by temperature-dependent models (0.09 day?1) closely approximate those observed in D. pectinatusin summer, but are much greater than those observed in P. antarctica (from 0.001 to 0.04 day?1 depending on developmental stages). This difference can be explained by the reproductive strategies and trophic positions of the two species and may also result from the dependence of larval growth on energy reserves in P. antarctica. The production rates are five- and tenfold greater in juvenile stages than in adults, respectively, for D. pectinatus and P. antarctica. The secondary production by D. pectinatusis insufficient to support P. antarcticaduring winter, when the predatory species probably shifts to alternate prey. In summer the predation by P. antarctica accounts for only a minor part of the mortality estimated for D. pectinatus (from 20% to 60% depending on the examined station). At two of the three stations examined in the Bay of Morbihan, the production of P. antarctica could potentially support the dietary requirements of planktivorous seabirds in the region (~2,000 kg prey day?1 for common diving petrels, Pelecanoides urinatrix, and ~90 kg prey day?1 for rockhopper penguins, Eudyptes chysocome filholi).  相似文献   

17.
Phenylureas such as diuron are major herbicides used worldwide to control undesirable weeds. The environmental fate of phenylureas is of great interest because massive amounts of those herbicides are used. It is known that abiotic degradation of phenylureas in soil–water systems is catalyzed by humic acids. However, due to the chemical heterogeneity and large molecular sizes of humic acids, the specific effects of functional groups during catalysis have not been elucidated. Therefore, we studied here for the first time the kinetics of diuron degradation in the presence of low molecular weight humic acid-like compounds such as benzoic acid derivatives. Experiments were carried out at various pH and temperature, and monitored by high-performance liquid chromatography. Results show that all benzoic acid derivatives efficiently catalyzed diuron hydrolysis. The catalytic efficiency decreased in the following order: 0.88 M?1 day?1 for 3,4-dihydroxybenzoic acid, 0.72 M?1 day?1 for 4-hydroxybenzoic acid, 0.23 M?1 day?1 for phthalic acid, 0.11 M?1 day?1 for 2-hydroxybenzoic acid, and 0.09 M?1 day?1 for 2,4-dihydroxybenzoic acid. These differences in the catalytic efficiency are explained by steric hindrance affecting the accessibility of reactive sites and hence influencing the rate of the overall process. Steric factors are therefore expected to control the catalytic activity of humic acids because of the chemical similarities between humic acids and low molecular weight humic acid-like compound. Our results should help predict more accurately the fate and abiotic degradation mechanism of phenylureas in the environment.  相似文献   

18.
Significant warming and acidification of the oceans is projected to occur by the end of the century. CO2 vents, areas of upwelling and downwelling, and potential leaks from carbon capture and storage facilities may also cause localised environmental changes, enhancing or depressing the effect of global climate change. Cold-water coral ecosystems are threatened by future changes in carbonate chemistry, yet our knowledge of the response of these corals to high temperature and high CO2 conditions is limited. Dimethylsulphoniopropionate (DMSP), and its breakdown product dimethylsulphide (DMS), are putative antioxidants that may be accumulated by invertebrates via their food or symbionts, although recent research suggests that some invertebrates may also be able to synthesise DMSP. This study provides the first information on the impact of high temperature (12 °C) and high CO2 (817 ppm) on intracellular DMSP in the cold-water coral Lophelia pertusa from the Mingulay Reef Complex, Scotland (56°49′N, 07°23′W), where in situ environmental conditions are meditated by tidally induced downwellings. An increase in intracellular DMSP under high CO2 conditions was observed, whilst water column particulate DMS + DMSP was reduced. In both high temperature treatments, intracellular DMSP was similar to the control treatment, whilst dissolved DMSP + DMS was not significantly different between any of the treatments. These results suggest that L. pertusa accumulates DMSP from the surrounding water column; uptake may be up-regulated under high CO2 conditions, but mediated by high temperature. These results provide new insight into the biotic control of deep-sea biogeochemistry and may impact our understanding of the global sulphur cycle, and the survival of cold-water corals under projected global change.  相似文献   

19.
Five hundred and ninety-nine primary producers and consumers in the Papahānaumokuākea Marine National Monument (PMNM) (22°N–30°N, 160°W–180°W) were sampled for carbon and nitrogen stable isotope composition to elucidate trophic relationships in a relatively unimpacted, apex predator–dominated coral reef ecosystem. A one-isotope (δ13C), two-source (phytoplankton and benthic primary production) mixing model provided evidence for an average minimum benthic primary production contribution of 65 % to consumer production. Primary producer δ15N values ranged from ?1.6 to 8.0 ‰ with an average (2.1 ‰) consistent with a prevalence of N2 fixation. Consumer group δ15N means ranged from 6.6 ‰ (herbivore) to 12.1 ‰ (Galeocerdo cuvier), and differences between consumer group δ15N values suggest an average trophic enrichment factor of 1.8 ‰ Δ15N. Based on relative δ15N values, the larger G. cuvier may feed at a trophic position above other apex predators. The results provide baseline data for investigating the trophic ecology of healthy coral reef ecosystems.  相似文献   

20.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号