首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Standard metabolic rates of the endemic Antarctic scallop, Adamussium colbecki (Smith, 1902), were measured in austral summer and under simulated winter conditions. Average mass-specific metabolic rates were significantly different between "summer" (151.17±45.06 µl O 2 g -1 h -1) and "winter" (106.52±39.65 µl O 2 g -1 h -1) animals. The overall metabolic rates of A. colbecki are comparable to those of other Antarctic bivalve species, but well below those of temperate scallop species. Data for 24 scallop populations (13 species) from different latitudes give no evidence for elevated metabolic rates in A. colbecki as suggested by the concept of "metabolic cold adaptation". A world-wide comparison of metabolic rate and overall growth performance of scallops indicates that in the Antarctic scallop the energetic advantage of low basal metabolism does not counterbalance the disadvantage of the prolonged seasonal period of food shortage.  相似文献   

2.
Pleuragramma antarcticum is a key component of the neritic assemblages in the Antarctic coastal waters. Larvae of this species were sampled from 2008 to 2011 in the Dumont d’Urville Sea (East Antarctica). The lipid class composition [triacylglycerols (TAG), cholesterol (Chol) and polar lipids (PL)] of larvae was measured to assess the larval condition. The total amount of lipids was linearly related to the quantity of structural polar lipids, suggesting that growth is favored over lipid storage. The TAG:Chol ratio showed interannual variability in the condition of fish larvae, probably related to prey availability. Nevertheless, the essential fatty acids composition of polar lipids illustrates that larvae with low levels of TAG:Chol could be either growing or under starvation. Only the combination of a low TAG:Chol ratio and low polar lipids content, which can also be mobilized during starvation periods, allowed identification of larvae in poor condition. This lipid condition index should be of great assistance to evaluate the probability of survival of P. antarcticum larvae in long-term monitoring. It has widespread applicability and should also be useful in the diagnosis of nutritional condition in other species.  相似文献   

3.
Rates of respiration and protein synthesis were measured during embryonic and larval development of Antarctic asteroids with different life-history modes (non-feeding and feeding larvae: Acodontaster hodgsoni, Porania antarctica, Odontaster meridionalis). Patterns of respiration for these species all show an increase during embryogenesis, with subsequent maintenance of routine respiration (“starvation resistance”), even in the absence of food for ~4 months (O. meridionalis). Fractional rates of protein synthesis (i.e., rate per unit mass of whole-body protein content) in the Antarctic larvae are essentially identical to those of temperate species. Larvae of O. meridionalis had an average fractional synthesis rate of 0.52% ± 0.05 h−1 at −1.0°C, which is comparable to the temperate asteroid Asterina miniata at 0.53% ± 0.14 h−1 at 15°C. For embryos of the asteroids A. hodgsoni and P. antarctica, fractional rates of protein synthesis (~0.2% h−1) also are comparable to those reported for embryos of temperate echinoderm species. While rates of synthesis are high, rates of protein deposition are relatively low (percent of protein synthesized that is retained for growth). During a ~4 month growth period for larvae of O. meridionalis, the average protein depositional efficiency was 5.2%. This contrasts with higher rates of depositional efficiency reported for similar developmental stages of temperate echinoderm species. The biological significance of maintaining high rates of macromolecular synthesis for species with low rates of cell division and low protein depositional efficiencies is intriguing in the context of understanding the mechanistic bases of extended life spans and dispersal potential in response to changing Antarctic environments.  相似文献   

4.
Depleted uranium (DU) is widely used in military anti-armor weapons. Recent evidence suggested that oxidative stress and mitochondrial dysfunction may contribute to DU-induced toxicity. However, the underlying mechanisms of DU toxicity in mitochondria are not well understood. In this study, liver mitochondria were obtained from Wistar rats treated with DU in the form of uranyl acetate (UA) (0.5, 1 or 2 mg/kg i.p.) using differential centrifugation. For in vitro experiments, control rat liver mitochondria were incubated with different concentrations of UA (50, 100 or 200 μM) for 1 hr. Mitochondrial reactive oxygen species (ROS) production, collapse of mitochondrial membrane potential, and mitochondrial swelling were examined by flow cytometry. Mitochondrial sources of ROS formation were determined using specific substrates and inhibitors. Extent of lipid peroxidation (LPO) and glutathione (GSH) oxidation, and also complex II and IV activities were detected via spectroscopy. Further, the concentration of ATP and ATP/ADP ratio was measured using luciferase enzyme and release of cytochrome c from mitochondria which was detected by ELISA kit. UA induced succinate-supported mitochondrial ROS production, elevated LPO levels, GSH oxidation, and mitochondrial complex II inhibition. UA also induced mitochondrial permeability transition and increase in cytochrome c release which subsequently disturbed oxidative phosphorylation and reduced the mitochondrial ATP concentration. Data suggest that mitochondrial oxidative stress and uncoupling of oxidative phosphorylation may play key roles in DU-induced hepatic toxicity.  相似文献   

5.
Trachurus capensis is an important fisheries resource in the degraded Namibian upwelling ecosystem. Food supply and shoaling of hypoxic zones are hypothesised to influence the species’ recruitment success. This paper is the first to quantify energy requirements and hypoxia tolerance of larval and juvenile stages of a Trachurus species. We measured normoxic respiration rates of T. capensis with a size range from 0.001 to 20.8 g wet mass (WM) collected off Cape Town (33.9°S, 18.5°E, 12/2009) and in the northern Benguela (17–24°S, 11–15°E, 02/2011). Routine metabolic rate (RMR) and standard routine rate (SRR) (mg O2 h?1) followed the allometric functions RMR = 0.418 WM0.774 and SRR = 0.275 WM0.855, respectively. Larvae and juveniles had comparatively high metabolic rates, and the energy demand of juveniles at the upper end of the size range appeared too high to be fuelled by a copepod diet alone. T. capensis’ early life stages showed a high tolerance to hypoxic conditions. RMR in larvae did not change until 30 % O2sat at 18 °C. In juveniles, critical oxygen saturation levels were low (PC for SRR = 11.2 ± 1.7 % O2sat and PC for RMR = 13.2 ± 1.6 % O2sat at 20 °C) and oxy-regulation effective (regulation index = 0.78 ± 0.09). A high hypoxia tolerance may facilitate the retention of larvae in near-shore waters providing favourable feeding conditions and allowing juveniles to exploit food resources in the oxygen minimum zone. These mechanisms seem to well adapt T. capensis to a habitat affected by spreading hypoxic zones and probably enhance its recruitment success.  相似文献   

6.
Intertidal rocky shores are characterized by vertical zonation that results from the interplay between environmental conditions, organism physiology, and species interactions. Metabolism of intertidal organisms is highly variable between species and it changes with vertical position along the intertidal gradient. The present study aimed to quantify the carbon metabolism of nine intertidal rocky shore gastropods, in order to clarify their respective roles in carbon production during emersion and immersion. The influences of monthly temperature variation and tidal level were tested for each species. Analyses were performed in the laboratory using the infrared gas analyzer method for measuring aerial respiration rates, and the dissolved inorganic carbon and total alkalinity technique for measuring aquatic respiration rate and calcification. Hourly carbon fluxes were calculated for the mean annual temperature of 13 °C measured in both air and underwater in the study area. Respiration rates were similar for emersion (8–25 μmol COg AFDW?1 h?1) and immersion (10–23 μmol DIC g AFDW?1 h?1). For all species, underwater respiration fluxes were more influenced by monthly temperature variation than by air fluxes, probably as an adaptation to the rapid changes occurring during emersion. Calcification was an important factor influencing annual carbon fluxes for all studied species; every species showed different calcification rates according to its size and position on the intertidal zone. Annual carbon emissions were calculated using the mean immersion/emersion time of each species. Intertidal gastropod carbon emission was primarily influenced by body biomass and their vertical position within the intertidal zone.  相似文献   

7.
Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365–488 (69.5 ± 117)] µg L?1 than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14–232 (22.6 ± 41.1)] µg L?1. Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO3 2? (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.  相似文献   

8.
The present study was conducted to establish the relationship between selected oxidative stress parameters and ultrastructural responses in liver tissue of Labeo rohita fingerlings exposed to cypermethrin. Fish were exposed to lethal (4.0 μg L?1) and sublethal (0.4 μg L?1) concentrations of cypermethrin for a period of 24, 48, 72 and 96 h for acute studies and 1, 5, 10 and 15 days for subacute studies, respectively. Results showed increased catalase (CAT) and protease activity, hydrogen peroxide (H2O2), malondialdehyde (MDA), protein carbonyls and free amino acid (FAA) levels at both concentrations. This suggests participation of free-radical-induced oxidative cell injury in mediating the hepatotoxicity of cypermethrin. In corroboration of this, ultrastructural lesions witnessed a reduction in the number of cell organelles, swollen, vacuolated and condensed mitochondria, dilated rough endoplasmic reticulum, and reduced numbers of smooth enodplasmic reticulum, peroxisomes and lysosomes at the lethal (4.0 μg L?1) concentration. At the sublethal (0.4 μg L?1) concentration, cytoplasmic vacuolation, condensed, vacuolated and swollen mitochondria, dilated rough endoplasmic reticulum and an absence of hepatocyte microvilli were prominent. Ultrastructural changes were exhibited as subcellular responses due to the imbalance in cellular oxidative status by means of oxidative damage.  相似文献   

9.
To evaluate the effects of temperature and pCO2 on coral larvae, brooded larvae of Pocillopora damicornis from Nanwan Bay, Taiwan (21°56.179′N, 120°44.85′E), were exposed to ambient (419–470 μatm) and high (604–742 μatm) pCO2 at ~25 and ~29 °C in two experiments conducted in March 2010 and March 2012. Larvae were sampled from four consecutive lunar days (LD) synchronized with spawning following the new moon, incubated in treatments for 24 h, and measured for respiration, maximum photochemical efficiency of PSII (F v/F m), and mortality. The most striking outcome was a strong effect of time (i.e., LD) on larvae performance: respiration was affected by an LD × temperature interaction in 2010 and 2012, as well as an LD × pCO2 × temperature interaction in 2012; F v/F m was affected by LD in 2010 (but not 2012); and mortality was affected by an LD × pCO2 interaction in 2010, and an LD × temperature interaction in 2012. There were no main effects of pCO2 in 2010, but in 2012, high pCO2 depressed metabolic rate and reduced mortality. Therefore, differences in larval performance depended on day of release and resulted in varying susceptibility to future predicted environmental conditions. These results underscore the importance of considering larval brood variation across days when designing experiments. Subtle differences in experimental outcomes between years suggest that transgenerational plasticity in combination with unique histories of exposure to physical conditions can modulate the response of brooded coral larvae to climate change and ocean acidification.  相似文献   

10.
The influence of dietary elemental contents on consumer stoichiometry was investigated in selected and combined soft tissues (as a proxy of the whole individual) of the omnivorous sea urchin, Lytechinus variegatus. We raised urchins for 4 months in controlled seawater tanks using three different diets with different nutritional contents (from lower to higher: seagrass, red macroalgae, and a formulated diet). Individuals fed the different diets varied an average of 19.7, 19.4, and 38 % in C:N, C:P, and N:P ratios, respectively, with stronger temporal variability for C:P and N:P ratios across tissues and whole individuals. This resulted in homeostasis parameters (1/H) of ?0.45, 0.09, and 0.38, respectively, for C:N, C:P, and N:P, indicative of homeostatic to weakly homeostatic organisms, at least for C:P and N:P ratios. Individuals fed the nutrient-rich formulated diet had higher growth rates (14 ± 0.83 g WW month?1) than those fed macroalgae or seagrass (9.3 ± 0.57 and 3.4 ± 0.33 g WW month?1, respectively). However, rapid body increments in more nutritional diets caused both a decrease in the %N and an increase in the %P of soft tissues, which resulted in significant but opposite effects of diet stoichiometry and growth in sea urchin C:N (R = ?0.74 and R = 0.93, for diet and growth effects, respectively) and N:P ratios (R = 0.60 and R = ?0.63, also, respectively, for diet and growth effects). Among potential compensatory mechanisms helping to preserve certain levels of homeostasis, ingestion rates (g WW diet per g WW of urchin) were higher for seagrass and macroalgae diets than for the nutrient-rich formulated diet. In contrast, absorption and growth efficiencies displayed significant negative associations with nutrient contents in diets and did not exhibit nutritional compensation. Overall, our results suggest that resource stoichiometry strongly determines the growth rate of individuals (R = 0.88, P < 0.01), and moderate variability in C:N:P ratios of sea urchins possibly arise from differences in the allocation of proteins and RNA to body components, similarly to what has been proposed by the growth rate hypothesis.  相似文献   

11.
Oxygen and carbon stable isotope profiles were constructed for two species of large subtropical gastropods of the family Fasciolariidae—Triplofusus giganteus and Fasciolaria tulipa—from the Florida Keys and the Bahamas, to evaluate their life history and to assess their potential as paleoenvironmental proxies. Oxygen isotope profiles revealed T. giganteus and F. tulipa grew their shells for 6 and 3 years, respectively. Both mollusks show faster growth rates during the first half of their lifespan. Mean annual temperatures (MAT) derived from oxygen isotopes for T. giganteus were 26.5 °C and for F. tulipa were 26.7 °C, both matching instrumental MATs of 26.7 and 26.5 °C for the Florida Keys. Both shells, however, failed to record entire mean annual temperature ranges (MART). Fasciolaria tulipa yielded a calculated MART of 5.6 °C compared with a measured MART of 9.3 °C, and T. giganteus showed a calculated MART of 6.9 °C compared with a measured MART of 9.4 °C. Carbon isotopes of T. giganteus were ambiguous and reveal no significant relationships with trends in nutrient concentrations (N and P), dissolved oxygen, and dissolved organic carbon, although they did exhibit more negative values concomitant with landfall of Hurricane Irene and trended to increasing values with ontogeny that could reflect migration. Carbon isotopes in F. tulipa were lower during winters, possibly reflecting seasonal upwelling or seagrass-mediated carbon cycling.  相似文献   

12.
Antarctic krill maintain large population sizes despite dramatic seasonal fluctuations in food availability, but the mechanisms for this are still debated. The aim of this study was to compare seasonal differences in enzyme activity and respiration rates of larval and postlarval krill to provide insights into their overwintering strategies. Respiration rates, activity of the metabolic enzyme citrate synthase (CS), and those of the digestive enzymes laminarinase and total proteinase were measured in austral summer west of the Antarctic Peninsula, and in autumn in the southwestern Lazarev Sea. The 100-fold difference in chlorophyll a concentrations between the two studies is representative of the classic transition from a summer bloom to sparse winter conditions. Correspondingly, adult krill showed reduced respiration rates and CS activity in autumn. However, their digestive enzyme activity was significantly higher, suggesting more efficient assimilation of food at low food levels. Similar-sized larvae showed no summer-autumn differences in respiration rates and enzyme activity, supporting suggestions that they need to feed and grow year-round. However, trends in enzymatic activity varied between the larval stages measured, implying ontogenetic changes in body structure and function. Published online: 1 August 2002  相似文献   

13.
The respiration and excretion rates of Calanus glacialis (Jaschnov) Copepodite Stages III, IV, V, and adult females from the drift-ice area east of Svalbard (Barents Sea) were measured in shipboard experiments during the period from 27 May to 13 June, 1983. The phytoplankton biomass and abundance varied considerably between localities, but these variations were not generally reflected in the respiration and excretion rates of the copepod. The respiration and excretion rates of C. glacialis at the ambient temperature of-1.8°C (average respiration rates of 0.95, 0.73, 0.57, and 0.60 l O2 mg-1 dry wt h-1 for Copepodite Stage III, IV, V, and adult females, respectively) were similar to those previously reported for other large-sized copepods from cold or temperate areas. Average respiration and excretion rates tended to decrease with incubation time or time after capture. Measurements on ten occasions within a period of 27 h after capture revealed excretion rates of ammonium ranging between 2.9 and 16.8 for C III, 3.7 and 21.1 for C IV, 1.3 and 28.4 for C V, and 1.6 and 18.7 for adult females, all expressed as nmol mg-1 dry wt h-1. In all experiments, excretion rates of inorganic phosphate varied between 0.7 and 1.5 (C III), 0.5 and 1.1 (C IV), 0.2 and 0.8 (C V), and 0.3 and 1.0 (adult females) nmol mg-1 dry wt h-1. Ratios of O:N, O:P, and N:P indicated that much of the metabolic energy was derived from catabolism of proteins. Comparison of the turnover rate of carbon and nitrogen showed, however, that nitrogen turnover was between 2.6 and 8.9 times higher than that of carbon. This may indicate that the copepods deaminate ingested protein, with the carbon skeleton of the amino acids subsequently being used in the synthesis of lipid compounds, possibly wax esters.  相似文献   

14.
Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m?2 s?1 and UV-B radiation >1 W m?2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.  相似文献   

15.
Rates and direction of movement in the sand dollar Peronella lesueuri were measured in summer and winter in Cockburn Sound, a large coastal embayment in south-western Australia. P. lesueuri was found to have a diurnal activity pattern throughout the year and had a greater movement rate in the summer (mean of 5.3 cm h?1, day; 3.9 cm h?1, night) than in the winter (mean of 2.7 cm h?1, day; 2.0 cm h?1, night). Seasonal change in temperature and physiological requirements by the sand dollar are the most likely reason for the seasonal differences. Reasons for diurnal variation were not clear. Direction of movement was found to be random at both times of the year. Based on these movement rates, one sand dollar can bioturbate an approximate area of 0.1 m2 day?1 and 36.4 m2 year?1. At a conservative density estimate of 0.5 sand dollars per m2 it takes approximately 20 days for the sand dollars to rework the entire area of the sediments in the habitats they occupy.  相似文献   

16.
The diet of the emperor penguin Aptenodytes forsteri in the western Ross Sea during spring was investigated by analysis of stomach contents sampled at three different localities. At Cape Washington, emperor penguins feeding chicks consistently preyed on fishes (89 to 95% by mass) and crustaceans (5 to 11%) over the four spring seasons examined. By far the commonest prey was the Antarctic silverfish Pleuragramma antarcticum (89% of the fish prey); the remainder of fish prey were mainly unidentified juveniles of different species of channichthyid fishes. Three species dominated the crustacean part of the diet, i.e. the gammarid amphipods Abyssorchomene rossi/plebs (30% of the crustacean prey) and Eusirus microps (22%), together with the euphausiid Euphausia crystallorophias (24%). At Coulman Island and Cape Roget, fishes, mainly P. antarcticum, formed the bulk of the food (88 and 93% by mass, respectively), crustaceans were minor prey (2.5 and 0.4%), and the squid Psychroteuthis glacialis accounted for a small but significant part of the food (3.5 and 0.8%). This study emphasizes the importance of the small, shoaling pelagic fish Pleuragramma antarcticum as a key link between zooplankton and top predators, including seabirds, in the food web and marine ecosystem of the Ross Sea. Received: 20 May 1997 / Accepted: 8 October 1997  相似文献   

17.
The relationship between particulate-feeding rates and prey concentrations (functional response) of juvenile herring and sprat (5–9 cm total length) was investigated in controlled feeding experiments monitored by an underwater camera system. A special tank system was developed allowing the regulation and quantification of low prey concentrations (1–160 L?1). Non-evasive Artemia nauplii was used as prey to estimate the maximum biting rate of both predators. In contrast, Acartia tonsa with a high escape ability was used as a realistic prey type. Herring and sprat showed a type II functional response for both prey types. Nonlinear mixed effects model revealed no significant difference between the functional responses of both predators, except that herring showed significantly higher biting rates than sprat at A. tonsa concentrations below ~40 L?1. For both predators feeding rates were significantly higher with Artemia nauplii than with A. tonsa. Video analysis indicated that sprat, unlike herring, is an obligate particulate-feeder.  相似文献   

18.
The foraging areas and diets of the grey-headed albatross Thalassarche chrysostoma and wandering albatross Diomedea exulans were studied in March/April 2000 at Bird Island, South Georgia, during their respective chick-rearing and brood-guard periods. Oceanographically, March/April 2000 was abnormal, with warm conditions close to South Georgia. These conditions affected albatross foraging behaviour, particularly that of grey-headed albatrosses. Both species tended to forage in different areas of the ocean, with significant differences in trip durations. Grey-headed albatrosses (n=9) foraged mainly in Antarctic waters (predominantly shelf waters of the South Shetland Islands and Antarctic Peninsula, and also in oceanic waters around South Georgia), feeding mainly on krill (Euphausia superba; 77% by mass). Foraging trips lasted 13.3 days (range: 5–26 days), far longer than the 1–3 days found in previous studies. Only one grey-headed albatross was associated with the APF (Antarctic Polar Front), a reported foraging area in recent studies. Wandering albatrosses (n=9) foraged in Antarctic (South Georgia Shelf) and Antarctic Polar Frontal Zone (APFZ) waters, with trips of 1–4 days trip duration (usual for this species), feeding on fish (46% by mass) and cephalopods (32%). One bird was associated with the APF, and two birds foraged on the shelf/shelf break over the Patagonian shelf. These findings suggest that sea surface temperature anomalies, produced by movement of the APF closer to South Georgia or by eddies, may have had an effect on the foraging strategy of grey-headed albatrosses that year (the main prey of grey-headed albatrosses in previous studies, the ommastrephid Martialia hyadesi, is known to be associated with the APF). Also, when both albatross breeding periods overlap, their foraging areas were complementary, which reflected the prey taken.  相似文献   

19.
Shifts in the diet of top predators can be linked to changes in environmental conditions. In this study, we tested relationships between environmental variation and seasonal changes in diet of a top predator, the grey-headed albatross Thalassarche chrysostoma, breeding at Bird Island, South Georgia in an austral summer of 1999/2000. Oceanographic conditions in that year around South Georgia were abnormal (i.e. anomalously high sea surface temperature to a relative 19-year long-term mean). The diet of grey-headed albatrosses showed high seasonal variation, shifting from cephalopods (42.9 % by mass) in late February to Antarctic krill Euphausia superba (58.3 %) in late April, and grey-headed albatrosses breeding performance was low (16.8 %). This study shows these albatrosses did not manage to find sufficient alternative prey and highlight the risk to top predators if there is an increase in the frequency or severity of food shortages in Antarctic waters.  相似文献   

20.
Total lipids, hydrocarbons, wax esters, triacylglycerols, and phospholipids were determined for 22 major biomass species of zooplankton and fish in an Antarctic mesopelagic community that were collected in 1982 and 1983. Lipid levels were similar to levels in more temperate mesopelagic species. Total lipid concentration was depth related, with all lipid-rich species being collected at depths greater than 230 m. Wax ester content in copepods (60 to 70% of the total lipid) was generally higher than in subtropical species. Lipids indicated three predator-prey relationships (Parandania boecki-Atolla wyvillei, Thysanoessa macrura-Calanoides acutus andEurythenes gryllus-Atolla wyvillei). These were confirmed by gut content analyses. The mesopelagic fishBathylagus antarcticus, Pleuragramma antarcticum, andProtomyctophum bolini stored most lipid intramuscularly, whereasElectrona antarctica andGymnoscopelus nicholsi contained extensive stores in subcutaneous lipid sacs. The intramuscular lipids inP. antarcticum and the subcutaneous lipid sacs ofE. antarctica were primarily wax esters, possibly used for increased buoyancy or long-term energy storage. Unlike the odd-carbon preference of aliphatic hydrocarbons which typifies terrestrial plants and temperate marine organisms, even-carbon chain-length paraffins predominate in 80% of the Antarctic species analyzed. Although the source of these even-carbon n-alkanes cannot be determined from our data, their dominance in the species analyzed suggests that an unusual biochemical pathway may be responsible for their synthesis in this ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号