首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thompson JN  Merg KF 《Ecology》2008,89(8):2197-2206
One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.  相似文献   

2.
Barber NA  Adler LS  Theis N  Hazzard RV  Kiers ET 《Ecology》2012,93(7):1560-1570
Herbivores affect plants through direct effects, such as tissue damage, and through indirect effects that alter species interactions. Interactions may be positive or negative, so indirect effects have the potential to enhance or lessen the net impacts of herbivores. Despite the ubiquity of these interactions, the indirect pathways are considerably less understood than the direct effects of herbivores, and multiple indirect pathways are rarely studied simultaneously. We placed herbivore effects in a comprehensive community context by studying how herbivory influences plant interactions with antagonists and mutualists both aboveground and belowground. We manipulated early-season aboveground herbivore damage to Cucumis sativus (cucumber, Cucurbitaceae) and measured interactions with subsequent aboveground herbivores, root-feeding herbivores, pollinators, and arbuscular mycorrhizal fungi (AMF). We quantified plant growth and reproduction and used an enhanced pollination treatment to determine if plants were pollen limited. Increased herbivory reduced interactions with both antagonists and mutualists. Plants with high levels of early herbivory were significantly less likely to suffer leaf damage later in the summer and tended to be less attacked by root herbivores. Herbivory also reduced pollinator visitation, likely due to fewer and smaller flowers, and reduced AMF colonization. The net effect of herbivory on plant growth and reproduction was strongly negative, but lower fruit and seed production were not due to reduced pollinator visits, because reproduction was not pollen limited. Although herbivores influenced interactions between plants and other organisms, these effects appear to be weaker than the direct negative effects of early-season tissue loss.  相似文献   

3.
Bee-pollinated plants are frequently dichogamous: e.g. each flower has a discernable male and female phase, with only the male phase offering a pollen reward. Pollen-collecting bees should therefore discriminate against female-phase flowers to maximise their rate of pollen harvest, but this behaviour would reduce plant fitness due to inferior pollination. Here, we test the hypothesis that flowers use pollen-mimicking floral guides to prevent flower-phase discrimination. Such floral guides resemble pollen in spectral reflection properties and are widespread among angiosperm flowers. In an array of artificial flowers, bumblebees learned less well to discriminate between flower variants simulating different flowering phases when both flower variants carried an additional pollen-yellow guide mark. This effect depended crucially on the pollen-yellow colour of the guide mark and on its spatial position within the artificial flower. We suggest that floral guides evolved to inhibit flower-phase learning in bees by exploiting the innate colour preferences of their pollinators.  相似文献   

4.
Human activity causes abrupt changes in resource availability across the landscape. In order to persist in human-altered landscapes organisms need to shift their habitat use accordingly. Little is known about the mechanisms by which whole communities persist in human-altered landscapes, including the role of complementary habitat use. We define complementary habitat use as the use of different habitats at different times by the same group of species during the course of their activity period. We hypothesize that complementary habitat use is a mechanism through which native bee species persist in human-altered landscapes. To test this idea, we studied wild bee communities in agro-natural landscapes and explored their community-level patterns of habitat and resource use over space and time. The study was conducted in six agro-natural landscapes in the eastern United States, each containing three main bee habitat types (natural habitat, agricultural fields, and old fields). Each of the three habitats exhibited a unique seasonal pattern in amount, diversity, and composition of floral resources, and together they created phenological complementarity in foraging resources for bees. Individual bee species as well as the bee community responded to these spatiotemporal patterns in floral availability and exhibited a parallel pattern of complementary habitat use. The majority of wild bee species, including all the main crop visitors, used fallow areas within crops early in the season, shifted to crops in mid-season, and used old-field habitats later in the season. The natural-forest habitat supported very limited number of bees, mostly visitors of non-crop plants. Old fields are thus an important feature in these arable landscapes for maintaining crop pollination services. Our study provides a detailed examination of how shifts in habitat and resource use may enable bees to persist in highly dynamic agro-natural landscapes, and points to the need for a broad cross-habitat perspective in managing these landscapes.  相似文献   

5.
Ecological interaction networks are a valuable approach to understanding plant-pollinator interactions at the community level. Highly structured daily activity patterns are a feature of the biology of many flower visitors, particularly provisioning female bees, which often visit different floral sources at different times. Such temporal structure implies that presence/absence and relative abundance of specific flower-visitor interactions (links) in interaction networks may be highly sensitive to the daily timing of data collection. Further, relative timing of interactions is central to their possible role in competition or facilitation of seed set among coflowering plants sharing pollinators. To date, however, no study has examined the network impacts of daily temporal variation in visitor activity at a community scale. Here we use temporally structured sampling to examine the consequences of daily activity patterns upon network properties using fully quantified flower-visitor interaction data for a Kenyan savanna habitat. Interactions were sampled at four sequential three-hour time intervals between 06:00 and 18:00, across multiple seasonal time points for two sampling sites. In all data sets the richness and relative abundance of links depended critically on when during the day visitation was observed. Permutation-based null modeling revealed significant temporal structure across daily time intervals at three of the four seasonal time points, driven primarily by patterns in bee activity. This sensitivity of network structure shows the need to consider daily time in network sampling design, both to maximize the probability of sampling links relevant to plant reproductive success and to facilitate appropriate interpretation of interspecific relationships. Our data also suggest that daily structuring at a community level could reduce indirect competitive interactions when coflowering plants share pollinators, as is commonly observed during flowering in highly seasonal habitats.  相似文献   

6.
Peter CI  Johnson SD 《Ecology》2008,89(6):1583-1595
Plants that lack floral rewards can attract pollinators if they share attractive floral signals with rewarding plants. These deceptive plants should benefit from flowering in close proximity to such rewarding plants, because pollinators are locally conditioned on floral signals of the rewarding plants (mimic effect) and because pollinators are more abundant close to rewarding plants (magnet effect). We tested these ideas using the non-rewarding South African plant Eulophia zeyheriana (Orchidaceae) as a study system. Field observations revealed that E. zeyheriana is pollinated solely by solitary bees belonging to a single species of Lipotriches (Halictidae) that appears to be closely associated with the flowers of Wahlenbergia cuspidata (Campanulaceae), a rewarding plant with which the orchid is often sympatric. The pale blue color of the flowers of E. zeyheriana differs strongly from flowers of its congeners, but is very similar to that of flowers of W. cuspidata. Analysis of spectral reflectance patterns using a bee vision model showed that bees are unlikely to be able to distinguish the two species in terms of flower color. A UV-absorbing sunscreen was applied to the flowers of the orchid in order to alter their color, and this resulted in a significant decline in pollinator visits, thus indicating the importance of flower color for attraction of Lipotriches bees. Pollination success in the orchid was strongly affected by proximity to patches of W. cuspidata. This was evident from one of two surveys of natural populations of the orchid, as well as experiments in which we translocated inflorescences of the orchid either into patches of W. cuspidata or 40 m outside such patches. Flower color and location of E. zeyheriana plants relative to rewarding magnet patches are therefore key components of the exploitation by this orchid of the relationship between W. cuspidata and Lipotriches bee pollinators.  相似文献   

7.
Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.  相似文献   

8.
Moeller DA 《Ecology》2006,87(6):1510-1522
Reproductive assurance is often invoked as an explanation for the evolution of self-fertilization in plants. However, key aspects of this hypothesis have received little empirical support. In this study, I use geographic surveys of pollinator communities along with functional studies of floral trait variation to examine the role of pollination ecology in mating system differentiation among populations and subspecies of the annual plant Clarkia xantiana. A greenhouse experiment involving 30 populations from throughout the species' range indicated that variation in two floral traits, herkogamy and protandry, was closely related to levels of autofertility and that trait variation was partitioned mainly among populations. Emasculation experiments in the field showed that autonomous selfing confers reproductive assurance by elevating fruit and seed production. Surveys of pollinator communities across the geographic range of the species revealed that bee pollinator abundance and community composition differed dramatically between populations of the outcrossing subspecies xantiana and the selfing subspecies parviflora despite their close proximity. Specialist bee pollinators of Clarkia were absent from selfing populations, but they were the most frequent visitors to outcrossing populations. Moreover, within the outcrossing subspecies xantiana, there was a close correspondence between specialist abundance and population differentiation in herkogamy, a key mating system trait. This spatial covariation arose, in part, because geographically peripheral populations had reduced herkogamy, higher autofertility, and lower pollinator abundance compared to central populations of xantiana. Finally, I detected strong spatial structure to bee communities both across the range of the species and within the outcrossing subspecies. In both cases, spatial structure was stronger for specialist bees compared to generalist bees, and pollinator communities varied in parallel with population variation in herkogamy. These results provide evidence that mating system differentiation parallels spatial variation in pollinator abundance and community composition at both broad and more restricted spatial scales, consistent with the hypothesis that pollinator abundance and reproductive assurance are important drivers of plant mating system evolution.  相似文献   

9.
Within mosaic landscapes, many organisms depend on attributes of the environment that operate over scales ranging from a single habitat patch to the entire landscape. One such attribute is resource distribution. Organisms' reliance on resources from within a local patch vs. those found among habitats throughout the landscape will depend on local habitat quality, patch quality, and landscape composition. The ability of individuals to move among complementary habitat types to obtain various resources may be a critical mechanism underlying the dynamics of animal populations and ultimately the level of biodiversity at different spatial scales. We examined the effects that local habitat type and landscape composition had on offspring production and survival of the solitary bee Osmia lignaria in an agri-natural landscape in California (U.S.A.). Female bees were placed on farms that did not use pesticides (organic farms), on farms that did use pesticides (conventional farms), or in seminatural riparian habitats. We identified pollens collected by bees nesting in different habitat types and matched these to pollens of flowering plants from throughout the landscape. These data enabled us to determine the importance of different plant species and habitat types in providing food for offspring, and how this importance changed with landscape and local nesting-site characteristics. We found that increasing isolation from natural habitat significantly decreased offspring production and survival for bees nesting at conventional farms, had weaker effects on bees in patches of seminatural habitat, and had little impact on those at organic farm sites. Pollen sampled from nests showed that females nesting in both farm and seminatural habitats relied on pollen from principally native plant species growing in seminatural habitat. Thus connectivity among habitats was critical for offspring production. Females nesting on organic farms were buffered to isolation effects by switching to floral resources growing at the farm site when seminatural areas were too distant. Overall local habitat conditions (farm management practices) can help bolster pollinators, but maintaining functional connectivity among habitats will likely be critical for persistence of pollinator populations as natural habitats are increasingly fragmented by human activities.  相似文献   

10.
The ongoing scientific controversy over a putative "global pollination crisis" underscores the lack of understanding of the response of bees (the most important taxon of pollinators) to ongoing global land-use changes. We studied the effects of distance to forest, tree management, and floral resources on bee communities in pastures (the dominant land-use type) in southern Costa Rica. Over two years, we sampled bees and floral resources in 21 pastures at three distance classes from a large (approximately 230-ha) forest patch and of three common types: open pasture; pasture with remnant trees; and pasture with live fences. We found no consistent differences in bee diversity or abundance with respect to pasture management or floral resources. Bee community composition, however, was strikingly different at forest edges as compared to deforested countryside only a few hundred meters from forest. At forest edges, native social stingless bees (Apidae: Meliponini) comprised approximately 50% of the individuals sampled, while the alien honeybee Apis mellifera made up only approximately 5%. Away from forests, meliponines dropped to approximately 20% of sampled bees, whereas Apis increased to approximately 45%. Meliponine bees were also more speciose at forest edge sites than at a distance from forest, their abundance decreased with continuous distance to the nearest forest patch, and their species richness was correlated with the proportion of forest cover surrounding sample sites at scales from 200 to 1200 m. Meliponines and Apis together comprise the eusocial bee fauna of the study area and are unique in quickly recruiting foragers to high-quality resources. The diverse assemblage of native meliponine bees covers a wide range of body sizes and flower foraging behavior not found in Apis, and populations of many bee species (including Apis), are known to fluctuate considerably from year to year. Thus, the forest-related changes in eusocial bee communities we found may have important implications for: (1) sustaining a diverse bee fauna in tropical countryside; (2) ensuring the effective pollination of a diverse native plant community; and (3) the efficiency and stability of agricultural pollination, particularly for short-time-scale, mass-flowering crops such as coffee.  相似文献   

11.
Chamberlain SA  Holland JN 《Ecology》2008,89(5):1364-1374
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.  相似文献   

12.
Kessler A  Halitschke R  Poveda K 《Ecology》2011,92(9):1769-1780
Although induced plant responses to herbivory are well studied as mechanisms of resistance, how induction shapes community interactions and ultimately plant fitness is still relatively unknown. Using a wild tomato, Solanum peruvianum, native to the Peruvian Andes, we evaluated the disruption of pollination as a potential ecological cost of induced responses. More specifically, we tested the hypothesis that metabolic changes in herbivore-attacked plants, such as the herbivore-induced emission of volatile organic compounds (VOCs), alter pollinator behavior and consequentially affect plant fitness. We conducted a series of manipulative field experiments to evaluate the role of herbivore-induced vegetative and floral VOC emissions as mechanisms by which herbivory affects pollinator behavior. In field surveys and bioassays in the plants' native habitat, we found that real and simulated herbivory (methyl jasmonate application) reduced attractiveness of S. peruvianum flowers to their native pollinators. We show that reduced pollinator preference, not resource limitation due to leaf tissue removal, resulted in reduced seed set. Solitary bee pollinators use floral plant volatiles, emitted in response to herbivory or methyl jasmonate treatment, as cues to avoid inflorescences on damaged plants. This herbivory-induced pollinator limitation can be viewed as a general cost of induced plant responses as well as a specific cost of herbivory-induced volatile emission.  相似文献   

13.
Gremer JR  Sala A  Crone EE 《Ecology》2010,91(11):3407-3413
Prolonged dormancy is a life-history stage in which mature plants fail to resprout for one or more growing seasons and instead remain alive belowground. Prolonged dormancy is relatively common, but the proximate causes and consequences of this intriguing strategy have remained elusive. In this study we tested whether stored resources are associated with remaining belowground, and investigated the resource costs of remaining belowground during the growing season. We measured stored resources at the beginning and end of the growing season in Astragalus scaphoides, an herbaceous perennial in southwest Montana, USA. At the beginning of the growing season, dormant plants had lower concentrations of stored mobile carbon (nonstructural carbohydrates, NSC) than did emergent plants. Surprisingly, during the growing season, dormant plants gained as much NSC as photosynthetically active plants, an increase most likely due to remobilization of structural carbon. Thus, low levels of stored NSC were associated with remaining belowground, and remobilization of structural carbon may allow for dormant plants to emerge in later seasons. The dynamics of NSC in relation to dormancy highlights the ability of plants to change their own resource status somewhat independently of resource assimilation, as well as the importance of considering stored resources in understanding plant responses to the environment.  相似文献   

14.
Galen C  Geib JC 《Ecology》2007,88(5):1202-1209
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.  相似文献   

15.
Advances in pollination ecology from tropical plantation crops   总被引:3,自引:0,他引:3  
Although ecologists traditionally focus on natural ecosystems, there is growing awareness that mixed landscapes of managed and unmanaged systems provide a research environment for understanding basic ecological relationships on a large scale. Here, we show how tropical agroforestry systems can be used to develop ideas about the mechanisms that influence species diversity and subsequent biotic interactions at different spatial scales. Our focus is on tropical plantation crops, mainly coffee and cacao, and their pollinators, which are of basic ecological interest as partners in an important mutualistic interaction. We review how insect-mediated pollination services depend on local agroforest and natural habitats in surrounding landscapes. Further, we evaluate the functional significance of pollinator diversity and the explanatory value of species traits, and we provide an intercontinental comparison of pollinator assemblages. We found that optimal pollination success might be best understood as a consequence of niche complementarities among pollinators in landscapes harboring various species. We further show that small cavity-nesting bees and small generalist beetles were especially affected by isolation from forest and that larger-bodied insects in the same landscapes were not similarly affected. We suggest that mixed tropical landscapes with agroforestry systems have great potential for future research on the interactions between plants and pollinators.  相似文献   

16.
Cassia siamea plants growing at two different sites (polluted and non-polluted) on two important roads of Agra city exhibited significant differences in their flowering phenology and floral morphology. The flowering in plants growing at polluted site is delayed and there was a marked reduction in flowering density, flowering period, size of floral parts, pollen fertility, fruit and seed-set. SEM observations revealed the presence of well developed glandular structures and reduction in the number and size of large stomata on the anther surface at polluted site. These changes were found to be closely associated with the extent of air pollution caused mainly by significant in the number of automobiles.  相似文献   

17.
Observations of a monkey community in a forest of the Zaire Basin show that four species intensively lick the nectar of Daniellia pynaertii (Caesalpinoideae) for 5 months of the year; nectar makes up a mean of 20% and a maximum of 50% of monthly plant feeding records (Fig. 3). Such intensive nectar-feeding by monkeys of up to 8 kg body weight probably developed in these basically frugivorous primates as an alternative strategy to cope with a shortage of fleshy fruits. This would have been possible due to the high density of the plant species, the synchrony and abundance of its flowering (Fig. 2), and the large size of the nectar drop and its nutritional value. Patterns of monkey movements among Daniellia trees show that one flowering tree may receive up to 10 species visits and 30 individual visits per day, for a total of up to 141 min. (Table 1). A monkey troop can visit 12 trees in succession over less than 3 h (Fig. 4). This suggests that monkeys are able to promote pollen transfer both among flowers of the same tree and between conspecific trees. The individual tree fruiting index is positively correlated with its flowering index and with the amount of visits by monkeys, indicating at least that monkeys do not inhibit the reproductive ability of flowers (Fig. 5). These results suggest that monkeys can be considered as a guild of effective pollinators. Long-term coevolution between the plant and its present-day pollinators seems unlikely, and we suggest that monkeys replaced other pollinators, such as Lepidoptera. This hypothesis is supported by the fact that tubular flowers adapted for pollination by Lepidoptera are found in affine species of the same genus and of affine genera, the latter being known to be pollinated by these insects. In contrast, D. pynaertii flowers typically meet the pollination syndrome currently defined for attracting large mammals: notably conspicuousness and open morphology of the flowers, nectar colour and abundance. These characteristics suggest that coadaptation between monkeys and plant or at least one-sided adaptation has operated. Correspondence to: A. Gautier-Hion  相似文献   

18.
Abstract: We examined the effects of habitat area and patch isolation on reproductive success in serpentine morning glory ( Calystegia collina [Convolvulaceae]), a primarily self-incompatible clonal plant endemic to serpentine outcrops in northern California's coast ranges. Within a 4000-km 2 region, we compared the reproductive success of C. collina on 16 small (<5 ha) and 7 large ( >300 ha) outcrops. Flower and fruit production were significantly higher on large serpentine outcrops than on small outcrops. Fruit production also was positively correlated with the soil's ratio of calcium to magnesium. Successful pollination was positively affected by flower density and the number of other flowering patches within 100 m of a C. collina patch. The number of nearby flowering patches was considerably higher on large than on small outcrops. Flowers on large outcrops did not receive significantly more bee visitors than flowers on small outcrops, suggesting that pollination success is related to the quality rather than the quantity of pollen deposited. Fruit production by plants on both small and large outcrops was enhanced by the experimental addition of pollen from other patches, but not by the addition of pollen from the same patch. These findings demonstrate that the size of habitat may have strong effects on the reproductive success of locally endemic plants by enhancing opportunities for successful sexual reproduction. They also warn against the presumption that naturally patchy plant species are invulnerable to the effects of habitat fragmentation.  相似文献   

19.
Williams NM  Regetz J  Kremen C 《Ecology》2012,93(5):1049-1058
Variation in the availability of food resources over space and time is a likely driver of how landscape structure and composition affect animal populations. Few studies, however, have directly assessed the spatiotemporal variation in resource availability that arises from landscape pattern, or its effect on populations and population dynamic parameters. We tested the effect of floral resource availability at the landscape scale on the numbers of worker, male, and queen offspring produced by bumble bee, Bombus vosnesen?kii, colonies experimentally placed within complex agricultural-natural landscapes. We quantified flower densities in all land use types at different times of the season and then used these data to calculate spatially explicit estimates of floral resources surrounding each colony. Floral availability strongly correlated with landscape structure, and different regions of the landscape showed distinct seasonal patterns of floral availability. The floral resources available in the landscape surrounding a colony positively affected the number of workers and males it produced. Production was more sensitive to early- than to later-season resources. Floral resources did not significantly affect queen production despite a strong correlation between worker number and queen number among colonies. No landscape produced high floral resources during both the early and late season, and seasonal consistency is likely required for greater queen production. Floral resources are important determinants of colony growth and likely affect the pollination services provided by bumble bees at a landscape scale. Spatiotemporal variation in floral resources across the landscape precludes a simple relationship between resources and reproductive success as measured by queens, but nonetheless likely influences the total abundance of bumble bees in our study region.  相似文献   

20.
Mangan SA  Herre EA  Bever JD 《Ecology》2010,91(9):2594-2603
A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant-soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant-soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF-host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant-soil feedback.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号