首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为研究含聚氯乙烯医疗废物的热解特性,选取输液管和尿样盒为对象,利用差热热重分析仪,在氮气气氛下进行热重实验,探讨了二者热失重行为和机制,分析了反应过程中热量变化及热解剩余物性状,建立了反应动力学模型.结果表明,输液管和尿样盒的降解过程以主要成分PVC的热解机制为主导,分别在约200~390℃和约390~550℃区间内,呈现两段主要的热解过程,最大热解速率分别出现在315℃和470℃左右;增塑剂可降低样品脱氯的温度并增加失重率,样品复杂的成分导致失重峰不规则且不平滑;热解过程为吸热反应,呈现2个明显的阶段,分别对应试样的两段热解,热延迟的存在导致DTA峰温稍滞后于对应的DTG峰温;建立的"整体两步四反应模型"能很好地描述输液管和尿样盒的热解行为.  相似文献   

2.
医疗废物典型组分的热重分析及新的动力学模型   总被引:6,自引:2,他引:6  
为研究医疗废物的热解失重规律和反应动力学机制,对其热失重过程进行了模拟.利用差热热重分析仪,在氮气气氛下对医疗废物的14种典型组分进行了热解实验,建立了“整体两步四反应模型”.结果显示,样品失水后,在160℃-290℃之间开始热解,次序依次为药物类、塑料类、蛋白质类、生物质类、合成纤维类和橡胶类;经过一步或两步失重,在800℃时热解基本完成.所建立的“整体两步四反应模型”能很好地描述样品的热解行为,最大相对误差为1.68%,并可以对医疗废物的热解产物进行预测.  相似文献   

3.
厌氧消化污泥和未消化污泥在TG-MS上的热化学特性比较   总被引:1,自引:0,他引:1  
利用热重-质谱联用仪对厌氧消化污泥和未消化污泥的燃烧和热解过程分别进行了研究.结果表明,2种污泥燃烧和热解过程中的热失重行为都可分为失水、有机物分解、无机物分解3个阶段.在300~350℃温度范围内,无论燃烧还是热解过程,未消化污泥有机物分解造成的热失重现象均比厌氧消化污泥明显.无机物分解阶段,厌氧消化污泥主要是碳酸盐的分解,未消化污泥主要是硫酸盐的分解.采用同步质谱仪对热解和燃烧的气态产物进行了分析,结果表明,污泥燃烧和热解过程除了产生大量的H2O和CO2外,热解过程还产生CH4、C2H6、C4H10、C7H8等有机气体以及H2.厌氧消化污泥热解时有机气体产生量小于未消化污泥.  相似文献   

4.
以热重分析和固定床热解实验为基础,研究初温和终温对废轮胎热解产率及气相产物特性影响。实验结果表明:废轮胎的热解过程存在两个主要失重过程,第一失重温度区间为200~500℃,第二失重温度区间为650~800℃;升温速率仅改变了热解的最大失重速率,并未改变废轮胎最终热解失重率。固定床实验表明:初始温度低于100℃时,废轮胎在800℃时热解已基本结束;当终温为800℃,初始温度在100~550℃范围内时,随着初始温度的提高,固、气两相产物产率均提高,而液相产物产率降低;其中气相中H2、CO、CH4的含量高于初始温度小于100℃时的含量;分析认为:可通过调节热解的初始温度调节废轮胎热解在不同热解阶段的时间分配,适当提高热解初始温度有利于提高整个热解过程中的时间利用效率、改变废轮胎热解产物的分布;废轮胎热解气化的最佳温度区间为500~800℃。  相似文献   

5.
采用热重分析仪对废旧聚氨酯硬泡在氮气中的热失重行为进行了研究,并对升温速率、热解终温对热解的影响进行了分析. 结果表明:在氮气气氛条件下,废旧聚氨酯硬泡热解主要发生在200~492 ℃;随着升温速率的提高,废旧聚氨酯硬泡热失重时挥发分初析温度向高温方向偏移,失重速率峰值(DTGmax)显著增大.利用热重-红外(TG-FTIR)联用方法对氮气气氛中10 ℃/min升温速率下的样品热解气体产物进行了检测. 结果表明:废旧聚氨酯硬泡热解产物有H2O,CO2,CO,CFC-11,以及含氯化合物、烯烃类、烷烃类和带有苯环等官能团的化合物,且主要气体产物有相似的析出规律.   相似文献   

6.
为优化甘蔗渣快速热解工艺并提取高附加值精细化工产品,采用热重分析和热裂解-气质联用分析方法研究了甘蔗渣热解过程及其热解产物.结果表明:甘蔗渣热解过程可分为干燥失水、快速热解、炭化三个阶段;快速热解为甘蔗渣热解的主要阶段,试样失重高达75%,提高升温速率有利于加快热解反应;甘蔗渣在600℃终温下热裂解特征产物共82种,主...  相似文献   

7.
采用热重分析、固定床实验、红外分析(FT-IR)研究了生活垃圾热解行为及产物中含氧物质的分布规律。用热重分析确定了生活垃圾主要失重区间(190~450℃),并计算此温度区间热解活化能为42.76 k J/mol。在热解终温为450~650℃条件下进行生活垃圾固定床热解实验,结果表明:随热解终温的增加,固体产物中氧分布率逐渐减小(39.2%~29.3%);热解气中氧分布率逐渐增加(22.1%~30.9%);热解液中氧分布率在40%左右。生活垃圾热解气中含氧成分主要是CO和CO2,在温度为450~650℃时,CO含量明显高于CO2,而CO2的释放速率则大于CO;固体产物中含氧官能团主要有—OH和C—O,其中峰面积比例顺序为C—O>—OH;热解液中含氧官能团主要有—OH、C O和C—O,其峰面积的比例顺序为—OH>C—O>C O。  相似文献   

8.
煤热解机理研究对提高煤炭利用效率和减轻生态环境影响具有重要意义。利用傅里叶红外光谱(FTIR)和气相色谱-质谱分析探究煤分子结构官能团和多环芳烃(PAHs)在煤热解过程中的演化特征及热解动力学行为。结果表明:当温度<300℃时,芳香族和脂肪族官能团减少主要缘于煤结构空隙小分子基团的挥发,含氧官能团减少主要因为在该热演化过程中自缔合羟基氢键受热断裂;当温度在300~600℃区间,C—O和脂肪族分别在300,400℃时受热分解,导致芳香族、脂肪族和含氧官能团总量迅速减少。各官能团在高温阶段的活化能均高于低温阶段,·OH和C—O在整个热解阶段的动力学模型均符合二级反应模式,脂肪族官能团在25~400,400~600℃区间分别符合两相界面模型和二级反应模式,CO在25~300,300~600℃区间分别符合三级扩散和二级反应模式。  相似文献   

9.
纸基复合包装中铝塑分离的湿法工艺条件研究   总被引:3,自引:1,他引:2       下载免费PDF全文
纸基复合包装中的纸基部分通过水力碎浆分离后可直接用于生产再生纸. 其铝塑部分由1层0.02~0.03 mm厚的铝箔和2层0.03~0.08 mm厚的低密度聚乙烯膜层压复合而成,主要对铝塑的湿法分离进行研究.比较了甲酸、乙酸、盐酸3种剥离剂的分离效果; 用甲酸作为铝塑剥离剂时, 考察了剥离剂的浓度、反应温度、液固比及破碎尺寸对铝塑分离的影响; 根据铝塑分离时间、分离率、铝的损失率等指标,通过正交试验及方差分析优化铝塑分离的工艺条件. 结果表明,甲酸分离铝塑的最优条件: 剥离剂浓度为4 mol/L, 反应温度为60 ℃,液固比为60 L/kg, 破碎尺寸为5 cm×5 cm. 在该条件下, 铝塑的分离率达到100%.   相似文献   

10.
通过热重分析实验和固定床热解实验研究了麦草碱性亚硫酸钠-蒽醌法制纸桨黑液固形物的热解特性和热解产物分布。结果表明:黑液固形物热解过程分为干燥脱水、有机物热解和无机物转化三个阶段,主要失重发生在200~550℃间;在热重分析基础上按一级反应动力学模型得到了黑液固形物热解各阶段的动力学参数;实验条件下,麦草浆黑液固形物固定床热解后约三分之一转化为挥发分,余下为固体残渣。  相似文献   

11.
为了探究农药废盐热处理适宜性,采用热重分析法结合动力学模型分别对3种典型农药废盐--咪鲜胺、烟嘧磺隆和草甘膦废盐进行研究.试验结果表明咪鲜胺废盐仅有一个明显失重阶段,温度高于600℃后质量基本不发生变化,烟嘧磺隆和草甘膦废盐有两个明显失重阶段,温度分别高于300℃和450℃后失重速率明显变缓,三种废盐的明显失重温度和减重率均不相同,说明不同类型废盐的热解/燃烧特性存在明显差异;3种废盐各自的燃烧和热解的失重过程均较为相似,说明氧气的存在不会对热处理过程产生影响.并结合热处理动力学参数可知,废盐的热处理是复杂的反应过程,烟嘧磺隆废盐燃烧和热解所需活化能相近为0.297~5.894kJ/mol,热处理过程最容易发生,咪鲜胺和草甘膦废盐燃烧的活化能低于热解活化能,说明氧气会促进咪鲜胺和草甘膦废盐的热处理过程,废盐的热处理在空气气氛下即可.  相似文献   

12.
典型农药废盐热处理特性及适用性   总被引:1,自引:0,他引:1       下载免费PDF全文
随着我国农药行业的迅速发展,农药废盐的管理和无害化处置已经成为亟待解决的环境问题.为了解决农药废盐热处理适用性的问题,推进废盐热处理工业化进程,选择盐城某企业典型农药废盐开展热重试验和动力学模型研究,分析废盐的热处理特性;基于热重试验和动力模型获取的优化参数,进一步利用管式炉模拟试验研究循环流化床焚烧炉处置废盐的可行性.结果表明:该农药废盐热解和燃烧的失重过程相似,在升温过程中一直处于缓慢失重状态,但均只有一个明显的失重阶段.其中,热解的失重阶段为170~298℃,700℃时减重率达到84.08%,燃烧的失重阶段为194~315℃,700℃时减重率达到81.45%,为了使废盐充分反应,根据热重结果确定热处理温度为350℃.热处理动力学分析表明,燃烧和热解在失重阶段反应机理相同,氧气的存在可以促进废盐的热处理过程,确定了热处理的组分为空气组分,该农药废盐属于低热值成分复杂的固体废物.在上述条件下,利用管式炉模拟试验进一步优化了废盐的热处理条件为温度350℃、停留时间45 min、空气组分、空气流量40 mL/min.对热处理后的残留物及烟气进行GC/MS分析发现,热处理法可有效降低废盐中有机污染物含量,烟气中有害物质以苯系物为主,含有少量氯苯及氯代烃类有机物.研究显示,经过管式炉热处理试验后,废盐中有机污染物的去除率达82.93%,可以有效降低有机污染物含量,从而验证了该类废盐热处理的适用性.   相似文献   

13.
废电脑电线热处理特征   总被引:4,自引:4,他引:0  
利用热重分析仪/傅立叶变换红外光谱仪(TG-FTIR)联用,测定废电脑电线的热处理特征及其过程产物.结果表明:废电脑电线热处理过程存在2个剧烈失重阶段,第一失重阶段处于250~340 ℃,该温度段失重约45%;第二失重阶段处于420~520 ℃,该温度段失重约10%.加热至600 ℃后样品失重缓慢.废电脑电线热处理产物中既有大量的CO2和CO,也有烷烃类、脂肪族、芳香族等有机化合物,并且还伴随大量HCl的产生.这些热处理产物主要来源于废电脑电线中有机聚合物以及阻燃剂等添加剂的分解.   相似文献   

14.
废冰箱保温材料低温热解及气体成分分析   总被引:4,自引:3,他引:1  
在80~220 ℃内,通过热重分析仪-傅立叶变化红外线光谱(TGA-FTIR)联用研究半球牌和雪花牌冰箱保温材料(聚氨酯硬质泡沫,简称PUR泡沫)热解特性.结果表明,PUR泡沫的质量损失随温度的增加而快速增大. 80~160 ℃的主要气体化合物有多元醇、氟氯化碳化合物 (CFCs)和含氯烷烃,并未发生热分解;170~220 ℃时发生初始热分解,主要是聚合物主链上的C—O键发生断裂,分解成多异氰酸酯和多元醇,同时还有烯烃产生. 在160 ℃以下加热PUR泡沫可快速移除包裹和吸附于泡沫中的CFCs,但在加热期间,必须收集和处理CFCs.   相似文献   

15.
热分析-质谱联用分析生物垃圾热解机理   总被引:3,自引:0,他引:3  
采用热分析-质谱联用技术研究了城市生活垃圾中三种生物质成分的热解过程,并采用Freeman-Carroll法定量分析了三种生物质热重动力学参数。结果表明木屑、落叶和菜叶这类生物质热解过程分为三个阶段,先是水分析出的微小失重阶段,之后是因纤维素等大分子进行交联缩聚的快速热解阶段,表现为放热效应,逸出的气体主要有H2O、CO2、C2H6/C2H4和CH4,最后是吸热脱链解聚的缓慢热解过程,逸出的小分子气体主要有CO2。  相似文献   

16.
餐厨垃圾具有成分复杂、含水率高的特点,热解处理法虽可实现餐厨垃圾的快速、无害化减量和能源资源回用,但其处理过程依赖外部能量输入,处理过程的能量平衡问题不容忽视。为全面探究餐厨垃圾热解系统能量流分布,研究提出了热解产物燃烧回用思路,聚焦系统自供能特性,开展固定床热解实验,考察不同含水率的餐厨垃圾在不同热解温度下的产物分布,并计算理论热值,结合TG-DSC分析确定原料热解理论耗能,建立了系统自供能特性指标(ERPC),计算系统的能量产生与消耗比,判断餐厨垃圾热解自供能的运行条件。结果表明:热解温度由400 ℃升至800 ℃,餐厨垃圾热解固体产物产率降低,气体产率提高,热解油产率呈现先增后减的趋势,并在500 ℃时达到最高。通过产物热值分析,过高的热解温度和含水率降低了餐厨垃圾热解产物的总能量。当三相热解产物全部燃烧回用时,为实现系统自供能餐厨垃圾含水率不得低于40%,热解温度不得高于500 ℃。当将油、气两相产物燃烧回用时,为实现系统自供能,热解温度须不超过600 ℃,含水率不超过10%。只燃烧热解气在所有条件下均无法实现系统自供能。  相似文献   

17.
温度对城市有机垃圾热解焦油成分的影响   总被引:1,自引:0,他引:1  
以城市有机垃圾热解焦油为对象,研究了不同热解终温下(600~800℃)焦油的特性及其随温度的变化规律.结果表明:随着热解终温从600℃升高至800℃,焦油中C含量从74.49%增至83.42%;焦油的芳香化程度高于原料而低于热解炭,焦油的极性低于原料和热解炭,随着热解终温的升高,焦油的H/C和O/C逐渐降低;多环芳烃(PAHs)是焦油的主要成分,随着热解终温从600℃升高至800℃,其含量从54.06%增至83.45%;萘及其衍生物是焦油PAHs的主要成分,其含量在热解终温600、700、800℃时分别占PAHs的50.72%、46.80%、39.26%.研究结果证明了垃圾热解焦油可用作碳基复合材料和作为制备染料、树脂、溶剂、驱虫剂等的原料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号