首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Positive Matrix Factorization analysis of PM2.5 chemical speciation data collected from 2015–2017 at Washington State Department of Ecology’s urban NCore (Beacon Hill) and near-road (10th and Weller) sites found similar PM2.5 sources at both sites. Identified factors were associated with gasoline exhaust, diesel exhaust, aged and fresh sea salt, crustal, nitrate-rich, sulfur-rich, unidentified urban, zinc-rich, residual fuel oil, and wood smoke. Factors associated with vehicle emissions were the highest contributing sources at both sites. Gasoline exhaust emissions comprised 26% and 21% of identified sources at Beacon Hill and 10th and Weller, respectively. Diesel exhaust emissions comprised 29% of identified sources at 10th and Weller but only 3% of identified sources at Beacon Hill. Correlation of the diesel exhaust factor with measured concentrations of black carbon and nitrogen oxides at 10th and Weller suggests a method to predict PM2.5 from diesel exhaust without a full chemical speciation analysis. While most PM2.5 sources exhibit minimal change over time, primary PM2.5 from gasoline emissions is increasing on average 0.18 µg m?3 per year in Seattle.  相似文献   

2.
PM2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) speciation data collected between 2003 and 2005 at two United State Environmental Protection Agency (US EPA) Speciation Trends Network monitoring sites in the South Coast area, California were analyzed to identify major PM2.5 sources as a part of the State Implementation Plan development. Eight and nine major PM2.5 sources were identified in LA and Rubidoux, respectively, through PMF2 analyses. Similar to a previous study analyzing earlier data (Kim and Hopke, 2007a), secondary particles contributed the most to the PM2.5 concentrations: 53% in LA and 59% in Rubidoux. The next highest contributors were diesel emissions (11%) in LA and Gasoline vehicle emissions (10%) in Rubidoux. Most of the source contributions were lower than those from the earlier study. However, the average source contributions from airborne soil, sea salt, and aged sea salt in LA and biomass smoke in Rubidoux increased.To validate the apportioned sources in this study, PMF2 results were compared with those obtained from EPA PMF (US EPA, 2005). Both models identified the same number of major sources and the resolved source profiles and contributions were similar at the two monitoring sites. The minor differences in the results caused by the differences in the least square algorithm and non-negativity constraints between two models did not affect the source identifications.  相似文献   

3.
Abstract

Gaseous and particulate pollutant concentrations associated with five samples per day collected during a July 2001 summer intensive study at the Pittsburgh Carnegie Mellon University (CMU) Supersite were used to apportion fine particulate matter (PM2.5) into primary and secondary contributions using PMF2. Input to the PMF2 analysis included the concentrations of PM2.5 nonvolatile and semivolatile organic material, elemental carbon (EC), ammonium sulfate, trace element components, gas-phase organic material, and NOx, NO2, and O3 concentrations. A total of 10 factors were identified. These factors are associated with emissions from various sources and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. In addition, four secondary sources were identified, three of which were associated with secondary products of local emissions and were dominated by organic material and one of which was dominated by secondary ammonium sulfate transported to the CMU site from the west and southwest. The three largest contributors to PM2.5 were sec ondary transported material (dominated by ammonium sulfate) from the west and southwest (49%), secondary material formed during midday photochemical processes (24%), and gasoline combustion emissions (11%). The other seven sources accounted for the remaining 16% of the PM2.5. Results obtained at the CMU site were comparable to results previously reported at the National Energy Technology Laboratory (NETL), located approximately 18 km south of downtown Pittsburgh. The major contributor at both sites was material transported from the west and southwest. Some difference in nearby sources could be attributed to meteorology as evaluated by HYSPLIT model back-trajectory calculations. These findings are consistent with the majority of the secondary ammonium sulfate in the Pittsburgh area being the result of contributions from distant transport, and thus decoupled from local activity involving organic pollutants in the metropolitan area. In contrast, the major local secondary sources were dominated by organic material.  相似文献   

4.
Abstract

Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.  相似文献   

5.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

6.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

7.
Authors’ Reply     
ABSTRACT

Exposures of occupants in school buses to on-road vehicle emissions, including emissions from the bus itself, can be substantially greater than those in outdoor settings. A dual tracer method was developed and applied to two school buses in Seattle in 2005 to quantify in-cabin fine particulate matter (PM2.5) concentrations attributable to the buses' diesel engine tailpipe (DPMtp) and crankcase vent (PMck) emissions. The new method avoids the problem of differentiating bus emissions from chemically identical emissions of other vehicles by using a fuel-based organometallic iridium tracer for engine exhaust and by adding deuterated hexatriacontane to engine oil. Source testing results showed consistent PM:tracer ratios for the primary tracer for each type of emissions. Comparisons of the PM:tracer ratios indicated that there was a small amount of unburned lubricating oil emitted from the tailpipe; however, virtually no diesel fuel combustion products were found in the crankcase emissions. For the limited testing conducted here, although PMck emission rates (averages of 0.028 and 0.099 g/km for the two buses) were lower than those from the tailpipe (0.18 and 0.14 g/km), in-cabin PMck concentrations averaging 6.8 μg/m3 were higher than DPMtp (0.91 μg/m3 average). In-cabin DPMtp and PMck concentrations were significantly higher with bus windows closed (1.4 and 12 μg/m3, respectively) as compared with open (0.44 and 1.3 μg/m3, respectively). For comparison, average closed- and open-window in-cabin total PM2.5 concentrations were 26 and 12 μg/m3, respectively. Despite the relatively short in-cabin sampling times, very high sensitivities were achieved, with detection limits of 0.002 μg/m3 for DPMtp and 0.05 μg/m3 for PMck.

IMPLICATIONS PM2.5 measurements in two Seattle school buses showed average concentrations of 26 and 12 μg/m3 with windows closed and open, respectively. Virtually all PM2.5 was car bonaceous. Tracer measurements showed that bus self-pollution contributed approximately 50% of total PM2.5 concentrations with windows closed and 15% with windows open, with over three-quarters of these contributions attributed to crankcase emissions. Maintaining ventilation in buses clearly reduces total PM2.5 exposures and that from the buses' own emissions. The dual tracer method now offers researchers a new technique for explicit identification of single source contributions in settings with multiple sources of carbonaceous emissions.  相似文献   

8.
Abstract

Source types or source regions contributing to the concentration of atmospheric fine particles measured at Brigantine National Wildlife Refuge, NJ, were identified using a factor analysis model called Positive Matrix Factorization (PMF). Cluster analysis of backward air trajectories on days of high- and low-factor concentrations was used to link factors to potential source regions. Brigantine is a Class I visibility area with few local sources in the center of the eastern urban corridor and is therefore a good location to study Mid-Atlantic regional aerosol. Sulfate (expressed as ammonium sulfate) was the most abundant species, accounting for 49% of annual average fine mass. Organic compounds (22%; expressed as 1.4 × organic carbon) and ammonium nitrate (10%) were the next abundant species. Some evidence herein suggests that secondary organic aerosol formation is an important contributor to summertime regional aerosol.

Nine factors were identified that contributed to PM2.5 mass concentrations: coal combustion factors (66%, summer and winter), sea salt factors (9%, fresh and aged), motor vehicle/mixed combustion (8%), diesel/Zn-Pb (6%), incinerator/industrial (5%), oil combustion (4%), and soil (2%). The aged sea salt concentrations were highest in springtime, when the land breeze-sea breeze cycle is strongest. Comparison of backward air trajectories of high- and low-concentration days suggests that Brigantine is surrounded by sources of oil combustion, motor vehicle/mixed combustion, and waste incinerator/industrial emissions that together account for 17% of PM2.5 mass. The diesel/Zn-Pb factor was associated with sources north and west of Brigantine. Coal combustion factors were associated with coal-fired power plants west and southwest of the site. Particulate carbon was associated not only with oil combustion, motor vehicle/mixed combustion, waste incinerator/industrial, and diesel/Pb-Zn, but also with the coal combustion factors, perhaps through common transport.  相似文献   

9.
A nested version of the source-oriented externally mixed UCD/CIT model was developed to study the source contributions to airborne particulate matter (PM) during a two-week long air quality episode during the Texas 2000 Air Quality Study (TexAQS 2000). Contributions to primary PM and secondary ammonium sulfate in the Houston–Galveston Bay (HGB) and Beaumont–Port Arthur (BPA) areas were determined.The predicted 24-h elemental carbon (EC), organic compounds (OC), sulfate, ammonium ion and primary PM2.5 mass are in good agreement with filter-based observations. Predicted concentrations of hourly sulfate, ammonium ion, and primary OC from diesel and gasoline engines and biomass burning organic aerosol (BBOA) at La Porte, Texas agree well with measurements from an Aerodyne Aerosol Mass Spectrometer (AMS).The UCD/CIT model predicts that EC is mainly from diesel engines and majority of the primary OC is from internal combustion engines and industrial sources. Open burning contributes large fractions of EC, OC and primary PM2.5 mass. Road dust, internal combustion engines and industries are the major sources of primary PM2.5. Wildfire dominates the contributions to all primary PM components in areas near the fires. The predicted source contributions to primary PM are in general agreement with results from a chemical mass balance (CMB) model. Discrepancy between the two models suggests that further investigations on the industrial PM emissions are necessary.Secondary ammonium sulfate accounts for the majority of the secondary inorganic PM. Over 80% of the secondary sulfate in the 4 km domain is produced in upwind areas. Coal combustion is the largest source of sulfate. Ammonium ion is mainly from agriculture sources and contributions from gasoline vehicles are significant in urban areas.  相似文献   

10.
Daily and seasonal variation in the total elemental, organic carbon (OC) and elemental carbon (EC) content and mass of PM2.5 were studied at industrial, urban, suburban and agricultural/rural areas. Continuous (optical Dustscan, standard tapered element oscillating micro-balance (TEOM), TEOM with filter dynamics measurement system), semi-continuous (Partisol filter-sampling) and non-continuous (Dekati-impactor sampling and gravimetry) methods of PM2.5 mass monitoring were critically evaluated. The average elemental fraction accounted for 2-6% of the PM2.5 mass measured by gravimetry. Metals, like K, Mn, Fe, Cu, Zn and Pb were strongly inter-correlated, also frequently with non-metallic elements (P, S, Cl and/or Br) and EC/OC. A high OC/EC ratio (2-9) was generally observed. The total carbon content of PM2.5 ranged between 3 and 77% (averages: 12-32%), peaking near industrial/heavy trafficked sites. Principal component analysis identified heavy oil burning, ferrous/non-ferrous industry and vehicular emissions as the main sources of metal pollution.  相似文献   

11.
A highly resolved temporal and spatial Pearl River Delta (PRD) regional emission inventory for the year 2006 was developed with the use of best available domestic emission factors and activity data. The inventory covers major emission sources in the region and a bottom–up approach was adopted to compile the inventory for those sources where possible. The results show that the estimates for SO2, NOx, CO, PM10, PM2.5 and VOC emissions in the PRD region for the year 2006 are 711.4 kt, 891.9 kt, 3840.6 kt, 418.4 kt, 204.6 kt, and 1180.1 kt, respectively. About 91.4% of SO2 emissions were from power plant and industrial sources, and 87.2% of NOx emissions were from power plant and mobile sources. The industrial, mobile and power plant sources are major contributors to PM10 and PM2.5 emissions, accounting for 97.7% of the total PM10 and 97.2% of PM2.5 emissions, respectively. Mobile, biogenic and VOC product-related sources are responsible for 90.5% of the total VOC emissions. The emissions are spatially allocated onto grid cells with a resolution of 3 km × 3 km, showing that anthropogenic air pollutant emissions are mainly distributed over PRD central-southern city cluster areas. The preliminary temporal profiles were established for the power plant, industrial and on-road mobile sources. There is relatively low uncertainty in SO2 emission estimates with a range of −16% to +21% from power plant sources, medium to high uncertainty for the NOx emissions, and high uncertainties in the VOC, PM2.5, PM10 and CO emissions.  相似文献   

12.
A study of carbonaceous particulate matter (PM) was conducted in the Middle East at sites in Israel, Jordan, and Palestine. The sources and seasonal variation of organic carbon, as well as the contribution to fine aerosol (PM2.5) mass, were determined. Of the 11 sites studied, Nablus had the highest contribution of organic carbon (OC), 29%, and elemental carbon (EC), 19%, to total PM2.5 mass. The lowest concentrations of PM2.5 mass, OC, and EC were measured at southern desert sites, located in Aqaba, Eilat, and Rachma. The OC contribution to PM2.5 mass at these sites ranged between 9.4% and 16%, with mean annual PM2.5 mass concentrations ranging from 21 to 25 ug m?3. These sites were also observed to have the highest OC to EC ratios (4.1–5.0), indicative of smaller contributions from primary combustion sources and/or a higher contribution of secondary organic aerosol. Biomass burning and vehicular emissions were found to be important sources of carbonaceous PM in this region at the non-southern desert sites, which together accounted for 30%–55% of the fine particle organic carbon at these sites. The fraction of measured OC unapportioned to primary sources (1.4 μgC m?3 to 4.9 μgC m?3; 30%–74%), which has been shown to be largely from secondary organic aerosol, is relatively constant at the sites examined in this study. This suggests that secondary organic aerosol is important in the Middle East during all seasons of the year.  相似文献   

13.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

14.
Twenty-one samples were collected during the dry season (26 January–28 February 2004) at 12 sites in and around Addis Ababa, Ethiopia and analyzed for particulate matter with aerodynamic diameter <10 μm (PM10) mass and composition. Teflon-membrane filters were analyzed for PM10 mass and concentrations of 40 elements. Quartz-fiber filters were analyzed for chloride, sulfate, nitrate, and ammonium ions as well as elemental carbon (EC) and organic carbon (OC) content. Measured 24-h PM10 mass concentrations were <100 and 40 μg m−3 at urban and suburban sites, respectively. PM10 lead concentrations were <0.1 μg m−3 for all samples collected, an important finding because the government of Ethiopia had stopped the distribution of leaded gasoline a few months prior to this study. Mass concentrations reconstructed from chemical composition indicated that 34–66% of the PM10 mass was due to geologically derived material, probably owing to the widespread presence of unpaved roads and road shoulders. At urban sites, EC and OC compounds contributed between 31% and 60% of the measured PM10 while at suburban sites carbon compounds contributed between 24% and 26%. Secondary sulfate aerosols were responsible for <10% of the reconstructed mass in urban areas but as much as 15% in suburban sites, where PM10 mass concentrations were lower. Non-volatile particulate nitrate, a lower limit for atmospheric nitrate, constituted <5% and 7% of PM10 at the urban and suburban sites, respectively. At seven of the 12 sites, real-time PM10 mass, real-time carbon monoxide (CO), and instantaneous ozone (O3) concentrations were measured with portable nephelometers, electrochemical analyzers, and indicator test sticks, respectively. Both PM10 and CO concentrations exhibited daily maxima around 7:00 and secondary peaks in the late afternoon and evening, suggesting that those pollutants were emitted during periods associated with motor-vehicle traffic, food preparation, and heating of homes. The morning concentration maxima were likely accentuated by stable atmospheric conditions associated with overnight surface temperature inversions. Ozone concentrations were measured near mid-day on filter sample collection days and were in all cases <45 parts per billion.  相似文献   

15.
The Minnesota Particulate Matter 2.5 (PM2.5) Source Apportionment Study was undertaken to explore the utility of PM2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance – Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49–71% of PM2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20–70% of the primary PM2.5 contribution, largely exceeding the proportion in the primary PM2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources – including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM2.5 episodes were explained by both local and regional pollution events.  相似文献   

16.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

17.
Abstract

There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155–mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from ~19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were ~9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM10 and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national–level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10–4% and 1.6 x 10–3% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.  相似文献   

18.
This study identifies major contributing sources of high particulate matter (PM) days in Hong Kong and conducive meteorological conditions leading to high PM. The PM10 chemical composition of 3393 ambient samples collected at ten monitoring stations in Hong Kong during 1998–2005 were used as input for positive matrix factorization (PMF) modeling to identify and quantify the aerosol sources in Hong Kong. Days with PM10 levels exceeding 56 μg m?3, the average plus one standard deviation of the mass concentration of all samples, are defined as high PM days. A total of 401 samples fell in the high PM category during the study period. Biomass burning, secondary sulfate and secondary nitrate were found to be the major contributors leading to high PM, responsible for 68–73% of PM10 mass on high PM days. The contributions by these sources on high PM days were 140–180% higher than their respective average concentration contributions. These sources were identified to be regional sources on the grounds of little spatial variation in their concentrations among the monitoring stations and a temporal pattern of higher in the winter and lower in the summer. Sampling days of high PM in 2004 and 2005 were individually examined for weather charts and regional surface wind maps. Weak high pressures over mainland China were the most important synoptic event leading to high PM days in the fall and winter, while typhoon episodes were responsible for most summer cases. Approximately 80% of the high PM days were in the fall and winter months (September–February). Almost all the high PM days were associated with northwesterly, northerly or northeasterly regional transport. Anthropogenic primary sources (coal combustion, vehicular exhaust, and residue oil combustion) showed the highest contributions associated with northwesterly wind, indicating the strong influence of the more urbanized areas to the northwest of Hong Kong in the Pearl River Delta region.  相似文献   

19.
PM2.5 (particles with aerodynamic diameters less than 2.5 μm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO2) scrubber. SO2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H2S) abundances from geothermal springs, and one to two orders of magnitude higher than SO2 abundances in RCC emissions, implying that the SO2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K+) was most abundant in vegetative burning profiles. K+/K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning.  相似文献   

20.
Particle composition data for PM2.5 samples collected at Kalmiopsis Interagency Monitoring of Protected Visual Environments (IMPROVE) site in southwestern Oregon from March 2000 to May 2004 were analyzed to provide source identification and apportionment. A total of 493 samples were collected and 32 species were analyzed by particle induced X-ray emission, proton elastic scattering analysis, photon-induced X-ray fluorescence, ion chromatography, and thermal optical reflectance methods. Positive matrix factorization (PMF) was used to estimate the source profiles and their mass contributions. The PMF modeling identified nine sources. In the Kalmiopsis site, the average mass was apportioned to wood/field burning (38.4%), secondary sulfate (26.9%), airborne soil including Asian dust (8.6 %), secondary nitrate (7.6%), fresh sea salt (5.8%), OP-rich sulfate (4.9%), aged sea salt (4.5 %), gasoline vehicle (1.9%), and diesel emission (1.4%). The potential source contribution function (PSCF) was then used to help identify likely locations of the regional sources of pollution. The PSCF map for wood/field burning indicates there is a major potential source area in the Siskiyou County and eastern Oregon. The potential source locations for secondary sulfate are found in western Washington, northwestern Oregon, and the near shore Pacific Ocean where there are extensive shipping lanes. It was not possible to extract a profile directly attributable to ship emissions, but indications of their influence are seen in the secondary sulfate and aged sea salt compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号