首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Theory and simulation models suggest that small populations are more susceptible to extinction than large populations, yet assessment of this idea has been hampered by lack of an empirical base. I address the problem by asking how long different-sized populations persist and present demographic and weather data spanning up to 70 years for 122 bighorn sheep ( Ovis canadensis ) populations in southwestern North America Analyses reveal that: (1) 100 percent of the populations with fewer than 50 individuals went extinct within 50 years; (2) populations with greater than 100 individuals persisted for up to 70 years; and (3) the rapid loss of populations was not likely to be caused by food shortages, severe weather, predation, or interspecific competition These data suggest that population size is a marker of persistence trajectories and they indicate that local extinction cannot be overcome because 50 individuals, even in the short term, are not a minimum viable population size for bighorn sheep.  相似文献   

2.
DNA fingerprinting was used to assess levels of genetic variation in 106 Hawaiian Geese, or Nene ( Branta sandvicensis ), from two captive colonies in Hawaii and Slimbridge, England. Mantel tests were used to determine differences in mean similarity coefficients obtained from DNA fingerprints between unrelated and related Nene within and between captive colonies and to determine whether pedigree-based estimates of relatedness correlated with DNA fingerprint-based estimates. Between colonies, mean similarity coefficients for unrelated and related Slimbridge Nene were higher than those for Hawaiian Nene. Within each colony, related Nene bad higher mean similarity coefficients than did unrelated Nene. A positive relationship was found between coancestry coefficients and similarity coefficients. A greater number of founders for the Hawaiian colony contributed to the lower mean similarity coefficients. As genetic variation decreases, difficulty in distinguishing relatedness among individuals using DNA fingerprinting may increase. Lower genetic variation also may increase tine error in estimating the relationship between coancestry and similarity coefficients. DNA fingerprinting of Nene identified unique alleles and can determine optimal pairings between individuals. The calibrated similarity coefficient distributions can help determine the relatedness of individuals in wild populations of Nene.  相似文献   

3.
Extinctions are normal biological phenomena. Both mass extinctions in geological time and local extinctions in ecological time are well documented, but rates of extinction have increased in recent years—especially in vertebrates, including amphibians—as illustrated by recent reports of their population declines and range reductions. We suggest that long-term population data are necessary for rigorously evaluating the significance of the amphibian declines. Due to the physiological constraints, relatively low mobility, and site fidelity of amphibians, we suggest that many amphibian populations may be unable to recolonize areas after local extinction.  相似文献   

4.
Abstract: During the last 30 years, changes in the size of Hawaiian monk seal populations at several locations have been associated with the amount and type of human disturbance. Recreational beach activities caused monk seals to alter their pupping and hauling patterns. Survival of pups in suboptimal habitats was low, leading to gradual population declines. During the last decade at Kure Atoll, the process has been reversed human disturbance on beaches has decreased and traditional pupping and hauling sites have been reestablished Subsequently, high survival rates of young seals, coupled with two successful enhancement programs for female pups, have led to dramatic changes in the age and sex composition of the population. Based on these changes, the monk seal population at Kure Atoll soon should begin to increase. Apparently small behavioral changes in such vital activities as feeding and reproduction can have large demographic consequences. Therefore, monitoring of endangered species should include data on habitat use and age and sex composition, as well as estimates of abundance.  相似文献   

5.
6.
Equalization of family sizes is recommended for use in captive breeding programs, as it is predicted to double effective population sizes, reduce inbreeding, and slow the loss of genetic variation. The effects of maintaining small captive populations with equalization of family sizes versus random choice of parents on levels of inbreeding genetic variation, reproductive fitness, and effective population sizes ( N e) were evaluated in 10 lines of each treatment maintained with four pairs of parents per generation. The mean inbreeding coefficient ( F ) increased at a significantly slower rate with equalization than with random choice (means of 0.35 and 0.44 at generation 10). Average heterozygosities at generation 10, based on six polymorphic enzyme loci, were significantly higher with equalization (0.149) than with random choice (0.085), compared to the generation 0 level of 0.188. The competitive index measure of reproductive fitness at generation 11 was more than twice as high with equalization as with random choice, both being much lower than in the outbred base population. There was considerable variation among replicate lines within treatments in all the above measures and considerable overlap between lines from the two treatments. Estimates of N e for equalization were greater than those for random choice, whether estimated from changes in average heterozygosities or from changes in F. Equalization of family sizes can be unequivocally recommended for use in the genetic management of captive populations.  相似文献   

7.
Artificial propagation strategies often incur selection in captivity that leads to traits that are maladaptive in the wild. For propagation programs focused on production rather than demographic contribution to wild populations, effects on wild populations can occur through unintentional escapement or the need to release individuals into natural environments for part of their life cycle. In this case, 2 alternative management strategies might reduce unintended fitness consequences on natural populations: (1) reduce selection in captivity as much as possible to reduce fitness load (keep them similar), or (2) breed a separate population to reduce captive‐wild interactions as much as possible (make them different). We quantitatively evaluate these 2 strategies with a coupled demographic–genetic model based on Pacific salmon hatcheries that incorporates a variety of relevant processes and dynamics: selection in the hatchery relative to the wild, assortative mating based on the trait under selection, and different life cycle arrangements in terms of hatchery release, density dependence, natural selection, and reproduction. Model results indicate that, if natural selection only occurs between reproduction and captive release, the similar strategy performs better. However, if natural selection occurs between captive release and reproduction, the different and similar strategies present viable alternatives to reducing unintended fitness consequences because of the greater opportunity to purge maladaptive individuals. In this case, the appropriate approach depends on the feasibility of each strategy and the demographic goal (e.g., increasing natural abundance, or ensuring that a high proportion of natural spawners are naturally produced). In addition, the fitness effects of hatchery release are much greater if hatchery release occurs before (vs. after) density‐dependent interactions. Given the logistical challenges to achieving both the similar and different strategies, evaluation of not just the preferred strategy but also the consequences of failing to achieve the desired target is critical. Evaluación de Estrategias Alternativas para Minimizar las Consecuencias No Inesperadas en la Adecuación de Individuos Criados en Cautiverio sobre Poblaciones Silvestres  相似文献   

8.
Abstract: Environmental synergisms may pose the greatest threat to tropical biodiversity. Using recently updated data sets from the International Union for Conservation of Nature (IUCN) Red List, we evaluated the incidence of perceived threats to all known mammal, bird, and amphibian species in tropical forests. Vulnerable, endangered, and extinct species were collectively far more likely to be imperiled by combinations of threats than expected by chance. Among 45 possible pairwise combinations of 10 different threats, 69%, 93%, and 71% were significantly more frequent than expected for threatened mammals, birds, and amphibians, respectively, even with a stringent Bonferroni‐corrected probability value (p= 0.003). Based on this analysis, we identified five key environmental synergisms in the tropics and speculate on the existence of others. The most important involve interactions between habitat loss or alteration (from agriculture, urban sprawl, infrastructure, or logging) and other anthropogenic disturbances such as hunting, fire, exotic‐species invasions, or pollution. Climatic change and emerging pathogens also can interact with other threats. We assert that environmental synergisms are more likely the norm than the exception for threatened species and ecosystems, can vary markedly in nature among geographic regions and taxa, and may be exceedingly difficult to predict in terms of their ultimate impacts. The perils posed by environmental synergisms highlight the need for a precautionary approach to tropical biodiversity conservation.  相似文献   

9.
10.
Abstract: We examined the distributions of nine species of terrestrial insectivorous birds in 4- to 14-year-old rainforest fragments north of Manaus, Brazil. We surveyed 11 fragments of 1, 10, and 100 ha, 95 ha of secondary vegetation, and nine continuous forest plots (controls) of 1–100 ha. We augmented standard spot-mapping with extensive playback surveys. The fragments had been sampled with mist nets before isolation, so our results could be compared with the pre-isolation distribution. For the nine species, there were 55 cases of local extinction in the 11 fragments between about 1 year after isolation and the time of our surveys. This corresponds to 74% extinction of the local populations in fragments. These extinctions occurred despite the second-growth connection of some fragments to continuous forest as little as 70 m away. Three apparent colonization events by species not detected before isolation also occurred, but these may also reflect inadequate sampling before isolation. Our comparison of fragments and similar-sized control plots in continuous forest showed an area effect on species richness in both fragments and control plots, but fragments had fewer species than control plots of equal size. In a fragmented Amazonian landscape, the full suite of terrestrial insectivores would persist in the short term only in large fragments ( > 100 ha), although much larger areas are probably necessary for the long-term persistence of their populations.  相似文献   

11.
12.
The Role of Behavior in Recent Avian Extinctions and Endangerments   总被引:4,自引:0,他引:4  
Abstract: Understanding patterns of differential extinction and predicting the relative risks of extinction among extant species are among the most important problems in conservation biology. Although recent studies reveal that behavior can be a critical component in many species' extinctions or endangerments, current approaches to the problem of predicting extinction patterns largely ignore behavior. I reviewed how behavior can affect population persistence and then used recent avian extinctions and endangerments to illustrate behaviors relevant to extinction risk. Behaviors that affect population persistence can be grouped as aggregation, interspecific responses, dispersal, habitat selection, intraspecific behavior, and maladaptive behavior. Behavior that can affect extinction risk is not limited to birds; for example, in many taxonomic groups (vertebrate and invertebrate) there is evidence of socially facilitated reproduction in colonial species, Allee effects on reproductive success and survival, behavioral regulation of population size, and conspecific attraction to breeding sites. Incorporating specific behaviors into models predicting extinction probabilities and patterns should improve their predictions.  相似文献   

13.
Abstract: Understanding the ecological mechanisms that lead to extinction is a central goal of conservation. Can understanding ancient avian extinctions help to predict extinction risk in modern birds? I used classification trees trained on both paleoecological and historical data from islands across the Pacific to determine the ecological traits associated with extinction risk. Intrinsic traits, including endemism, large body size, and certain feeding guilds, were tightly linked with avian extinction over the past 3500 years. Species ecology and phylogeny were better predictors of extinction risk through time than extrinsic or abiotic factors. Although human impacts on birds and their habitats have changed over time, modern endangered birds share many of the same ecological characteristics as victims of previous extinction waves. My use of detailed predictions of extinction risk to identify species potentially in need of conservation attention demonstrates the utility of paleoecological knowledge for modern conservation biology.  相似文献   

14.
15.
16.
17.
18.
19.
Abstract: The consequences of rapid rainforest clearance on native avifauna are poorly understood. In Southeast Asia, Singapore, a newly developing country, has had 95% of its native lowland rainforest cleared. Most of the rainforest was lost in the mid- to late-nineteenth century. We compared avifauna checklists from 1923, 1949, and 1998 to determine the extent of extinctions between 1923 and 1998 in Singapore. Of 203 diurnal bird species, 65 were extirpated in Singapore in the past 75 years. Four of these species were nonforest- dependent species, whereas 61 (94%) were forest bird species dependent on the primary or old secondary forest to survive. Twenty-six forest bird species became extinct between 1923 and 1949, whereas 35 forest species disappeared after 1949. We compared the body lengths, feeding guilds, and vertical feeding zones between extinct and extant forest bird species to determine whether extinction patterns were dependent on these characteristics. Larger forest bird species went extinct between 1923 and 1949. Body sizes, however, did not affect the loss of forest bird species between 1949 and 1998. We observed high losses of insectivorous birds; the insectivore-carnivore and insectivore-granivore guilds lost> 80% of the species present in 1923. The highest losses were among birds that fed in the canopy. None of the forest bird species are currently common (>100 individuals/species) within Singapore. Our study shows that more than half the forest avifauna became locally extinct after extensive deforestation. Based on this fact, the countries within Southeast Asia should reconsider their heavy deforestation practices.  相似文献   

20.
Abstract: Skates are arguably the most vulnerable of exploited marine fishes. Their vulnerability is often assessed by examining fisheries catch trends, but these data are not generally recorded on a species basis except in France. Aggregated skate catch statistics tend to exhibit more stable trends than those of other elasmobranch fisheries. We tested whether such apparent stability in aggregated catch trends could mask population declines of individual species. We examined two time series of species-specific surveys of a relatively stable skate fishery in the northeast Atlantic. These surveys revealed the disappearance of two skate species, long-nose skate (   Dipturus oxyrhinchus ) and white skate (   Rostroraja alba ) and confirmed a previously documented decline of the common skate (   D. batis ). Of the remaining five skate species, the three larger ones have declined, whereas two smaller species have increased in abundance. The increase in abundance and biomass of the smaller species has resulted in the stability of the aggregated catch trends. Because there is significant dietary overlap among species, we suggest the increase in abundance of the smaller species may be due to competitive release as the larger species declined. A consequence of this kind of stability is that declining species cannot be detected without species-specific data, especially in taxa exhibiting competitive interactions. This may explain why previously documented disappearances of two species of skates went unnoticed for so long. The conservation of skates and other elasmobranchs requires species-specific monitoring and special attention to larger species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号