首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphogypsum board is a popular construction material used for housing panels in Korea. Phosphogypsum often contains (226)Ra which decays into (222)Rn through an alpha transformation. (222)Rn emanated from the (226)Ra-bearing phosphogypsum board has drawn the public concern due to its potential radiological impacts to indoor occupants. The emanation rate of (222)Rn from the board is estimated in this paper. A mathematical model of the emanation rate of (222)Rn from the board is presented and validated through a series of experiments. The back diffusion effect due to accumulation of (222)Rn-laden air was incorporated in the model and found to have a strong impact on the (222)Rn emanation characteristics.  相似文献   

2.
The (222)Rn concentrations in indoor workplaces were measured in Aomori Prefecture, Japan, and the results are reported here. This survey was part of a program to measure background natural radiation dose rate in the prefecture where the first Japanese nuclear fuel cycling facilities are now under construction.The survey of the (222)Rn concentrations in indoor workplaces was carried out at 107 locations from 1996 to 1998. The (222)Rn concentrations were measured for approximately one year at each site with passive Rn detectors, which used a polycarbonate film for counting alpha-rays and could separate concentrations of (222)Rn from (220)Rn. Weeklong measurements of (222)Rn concentration and working level were carried out with active detectors to get the ratio of (222)Rn concentration during working hours to non-working hours as well as equilibrium factors in selected locations.Diurnal variation of (222)Rn concentration depended on building structure, air-conditioning, time of day and day of the week (week days or weekend). The (222)Rn concentration during working hours was generally lower than that in non-working hours. Although the annual average (222)Rn concentration in indoor occupational environments was higher than that in dwellings, radiation dose for Aomori Prefecture residents from Rn in the former was 14% of the total indoor dose by Rn because of the lower concentration in working hours and lower occupancy factor.  相似文献   

3.
Large temporal variations of radon (222Rn) are often encountered in air in the geologic environment, at time scales from diurnal to annual. Interpretations as to the nature of these variations, unique to 222Rn, often invoke either above surface atmospheric variations, or the influence of subtle active geodynamic processes. So far the eventual geophysical drivers of the variation of 222Rn as well as its specific qualities enabling this temporal variation are not known. New insight on the temporal variation of 222Rn is gained by experimental simulation in confined air. Two short laboratory experiments, and one external experiment lasting over 3 years, were performed inside closed canisters and using natural and commercial 222Rn sources. Internal and external gamma and alpha detectors recorded variations of the radiation, up to around 20% of the equilibrium level. Radon signals of different time scale occurred with: a) periodic annual and semi-annual signals; b) non-periodic multi-day signals; c) periodic daily signals. Similar, related, inversely-related and dissimilar temporal patterns were manifested in the measured time series of the different sensors. Diurnal periodicity was dominated by the solar tide components S1, S2 and S3, exhibiting unlike relative amplitudes and different phases at the different sensors. A compound association occurs among the amplitudes and phases of the diurnal and seasonal periodicities of the daily 222Rn signal, linking the periodic phenomena to the rotation of earth around its axis and around the sun. 222Rn variation patterns in the frequency-time domain cannot be driven by the corresponding atmospheric variation patterns. These results, obtained under static and isolated conditions, are in disagreement with the expected radioactive equilibrium and its spatially uniform expression within and around the experimental volume. The external influence which drives the daily signals evolving from 222Rn inside the canister is non-atmospheric and seemed to be from a remote source and traversed a 5-cm thick lead shield. The similarities with observations on 222Rn signals from upper crustal levels imply that such an external influence, possibly as a component of solar irradiance, drives the 222Rn signals to a depth of at least 100 m. New combined prospects for the research are indicated in terms of the radioactive behavior of 222Rn in air and in terms of an above surface geophysical driver for this behavior.  相似文献   

4.
In this work, potable water samples collected from boreholes of the Migdonia valley, located NE of the city of Thessaloniki, were analyzed for the determination of uranium (238U) and radon (222Rn) concentrations. The objective of the present work is to examine if there is any correlation between radon and uranium concentrations in the water samples. For the determination of traces of uranium in water samples, an analytical technique was developed based on the selective adsorption of uranium on the chelating resin, SRAFION NMRR, and the in situ determination of the retained uranium by instrumental neutron activation analysis (INAA). By the described procedure, it was possible to determine uranium amounts in the range of microg/l. For measuring radon in water, a liquid scintillation counting system, using the Packard protocol was employed. The measured 222Rn activity concentrations are from background level up to 160 Bq l (-1).  相似文献   

5.
A low background station for the measurement of low level radioactivity is under development in Northern Italy. The rock cover is about 300 m water equivalent. We report and discuss measurements of radon concentration in air and of gamma, muon and neutron fluxes performed in the neighborhood of the station site. We present and apply a simple analytical model capable to disentangle the contribution to the measured gamma activities due to 222Rn in air from the one due to 238U and its daughters in the rocks.  相似文献   

6.
Submarine groundwater discharge (SGD), which includes fresh groundwater and recycled seawater, has been recognized as a widespread phenomenon that can provide important chemical elements to the ocean. Several studies have demonstrated that SGD may approach or even exceed freshwater sources in supplying nutrients to coastal zones. This work reports preliminary results of a study carried out in a series of small embayments of Ubatuba, S?o Paulo State, Brazil, covering latitudes between 23 degrees 26'S and 23 degrees 46'S and longitudes between 45 degrees 02'W and 45 degrees 11'W. The main aims of this research were to set up an analytical method to assess 222Rn and 226Ra activities in seawater samples and to apply the excess 222Rn inventories obtained to estimate SGD. Measurements made during the summer of 2001 included 222Rn and 226Ra in seawater, 226Ra in sediment, seawater and sediment physical properties, nutrients and seepage rates. A continuous 222Rn monitor was also used to determine in situ collection of data to study short-term changes at one location. All methods indicated significant inflow of subsurface fluids at rates in excess of several cm per day.  相似文献   

7.
Nationwide outdoor radon (222Rn) concentrations in Japan were measured to survey the environmental outdoor 222Rn level and to estimate the effective dose to the general public from 222Rn and its progeny. The 222Rn concentration was measured with a passive-type radon monitor. The 222Rn monitors were installed at about 700 points throughout Japan from 1997 to 1999. The annual mean 222Rn concentration in Japan was estimated from four quarters measurements of 47 prefectures in Japan. Nationwide outdoor mean 222Rn concentration was 6.1 Bq m(-3). This was about 40% of the indoor 222Rn concentration in Japan. The 222Rn concentration in Japan ranged from 3.3 Bq m(-3) in the Okinawa region to 9.8 Bq m(-3) in the Chugoku region, reflecting geological characteristics. Seasonal variation of outdoor 222Rn concentration was also found to be lowest in July to September, and highest in October to December. From the results of this 222Rn survey and previous indoor 222Rn survey program, the effective dose to the general public from 222Rn and its progeny was estimated to be 0.45 mSv y(-1).  相似文献   

8.
An experimental study concerning the transport of 222Rn in uranium mill tailings (UMTs) and in the cover layer was launched in 1997 with the participation of the French uranium mining company (COGEMA). Evaluation of the cover layer's effectiveness in reducing 222Rn flux emanating from UMTs was one of its objectives. In the first phase, the 222Rn flux densities were measured regularly on a UMT layer. In the second phase, the UMT was covered with a one-meter layer of compacted material consisting of crushed waste rock derived from mining activities. Radon-222 flux was then measured at the surface of this cover layer. Observations were compared with radon flux calculated using TRACI, a model for vertical water and gas flow and radon transport. The results show that the calculations bear a fair resemblance to the observations in both cases. They also show that the effectiveness of the cover layer calculated with TRACI, using the thickness and textural properties of the cover material, is very close to the measured effectiveness.  相似文献   

9.
This paper describes an application of the quasi-partition law of radon-222 (222Rn) to a deep unsaturated vadose zone in a field. 222Rn is a very useful tracer to investigate not only saturated but also unsaturated water flows in vadose zones. Concentrations of 222Rn in water in unsaturated soils are, based on the quasi-partition law, lower than those in saturated soils. However, no study has previously applied quasi-partition law of 222Rn to analyze saturated and unsaturated water flows in vadose zones. In this study, we observed the applicability of existing theoretical equations of quasi-partition law of 222Rn experimentally. After confirming the validity of the theoretical equation, we applied this equation to estimate the unsaturated water flow in an actual vadose zone. By comparing the estimated degree of saturation from 222Rn measurement with that from a neutron moisture meter measurement, we obtained a beautiful agreement between them.  相似文献   

10.
Based on an idealized model, both the annual and the seasonal radon ((222)Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil (226)Ra content and a global ecosystems database. Digital maps of the (222)Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average (222)Rn flux density from the soil surface across China was estimated to be 29.7+/-9.4 mBq m(-2)s(-1). Both regional and seasonal variations in the (222)Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil (226)Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China.  相似文献   

11.
A case study of the regional transport ( approximately 3000 km) of radon-222 ((222)Rn) from continental North-East Asia to the Japanese islands was performed by numerical analysis using five separate source areas (South, Middle and North China, Russia and Korea), while a seasonal northwest wind blew over the Japan Sea. The results for three periods (Term I: 16-18, Term II: 22-25 and Term III: 27-28 in December 1990) were compared with concentrations measured at the Kanazawa site (near the coast of the Japan Sea facing the seasonal wind) and the Nagoya site (overland and downwind on the shores of the Pacific Ocean). Most of the (222)Rn at the Kanazawa site was calculated to come from North China and Korea in Term I, Middle China, North China, and Korea in Term II, and Russia and Korea in Term III. The considerable differences in the origins of (222)Rn emanated from the continent were estimated between Terms I, II and III, even though the similar northwest wind was dominant over the Japan Sea. A contour line analysis indicated movement of (222)Rn emanated from Middle China in a northerly direction first and then a southeasterly direction, resulting from low pressure. The results suggest that the low-pressure systems play an important role in the transport of (222)Rn in North-East Asia.  相似文献   

12.
The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.  相似文献   

13.
Radon ((222)Rn) concentration was measured at indoor workplaces in Japan to estimate effective dose to the public from (222)Rn and its progeny. Measurements were made from 2000 to 2003 at 705 sites in four categories of office, factory, school and hospital. Passive type Rn monitors equipped with two sheets of polycarbonate thin films for measuring radon concentrations were installed at observation sites and replaced every 3 months to observe seasonal variations in (222)Rn concentrations. The range of annual mean (222)Rn concentrations for all sites was 1.4-182 Bq m(-3), with the arithmetic mean and standard deviation were 20.8 and 19.5 Bq m(-3). Annual mean (222)Rn concentration observed at office, factory, school and hospital were 22.6, 10.1, 28.4 and 19.8 Bq m(-3), respectively. Seasonal variations in (222)Rn concentrations at offices, schools and hospitals were similar to those found in dwellings, and variations in factories were similar to those found in outdoor environments. (222)Rn concentration observed in every quarter period was found to decrease as follows: school>office>hospital>factory. The average effective dose to the public due to (222)Rn was estimated to be 0.41 mSv y(-1) weighted by the working population. Considering the (222)Rn exposure in indoor workplaces, effective dose to the general public is estimated to be in the range from approximately 0.42 to 0.52 mSv y(-1).  相似文献   

14.
In the framework of a 222Rn screening campaign that was carried out in 58 public secondary schools in Galicia (NW Spain), the largest radon-prone area in the Iberian Peninsula, a positive correlation between indoor 222Rn concentration and outdoor gamma exposure rate was obtained. A new approach to the data acquisition in screening surveys was tested, improving the performances of this type of study and gathering useful data for future remedial actions. Using short-period detectors (charcoal canisters) firstly, in order to detect places showing 222Rn concentrations over 400 Bq m−3, the number of locations to be measured with long-period detectors (etched track detectors) is reduced. In this screening campaign, 34% of the schools surveyed presented at least one site exceeding the 400 Bq m−3 recommended action level established by the EU, and 15% had at least one site with 222Rn values over 800 Bq m−3. The maximum value recorded was 2084 ± 63 Bq m−3. These results are discussed and compared with data obtained in schools of several countries with similar geology. Seven schools were also studied for seasonal variations of 222Rn activity concentration. The results were not conclusive, and no significant correlation between season and 222Rn concentration was established. Finally, a continuous 222Rn concentration monitor was placed in the secondary school exhibiting a mean value of the 222Rn concentration very close to 400 Bq m−3. Maximum 222Rn concentration values were found to occur at times when the school was unoccupied.  相似文献   

15.
Soil gas 222Rn and 220Rn concentrations were measured at 18 locations in the Karkonosze-Izera Block area in southwestern Poland. Measurements were carried out in surface air and at sampling depths of 10, 40 and 80 cm. Surface air 222Rn concentrations ranged from 4 to 2160 Bq m(-3) and 220Rn ranged from 4 to 228 Bq m(-3). The concentrations for 10 and 40 cm varied from 142 Bq m(-3) to 801 kBq m(-3) and 102 Bq m(-3) to 64 kBq m(-3) for 222Rn and 220Rn, respectively. At 80 cm 222Rn concentrations ranged from 94 Bq m(-3) to >1 MBq m(-3). The 220Rn concentrations at 80 cm varied from 45 Bq m(-3) to 48 kBq m(-3). The concentration versus depth profiles for 222Rn differed for soils developed on fault zones, uranium deposits or both. Atmospheric air temperature and soil gas 222Rn and 220Rn were negatively correlated. At sampling sites with steep slopes, 220Rn concentrations decreased with depth.  相似文献   

16.
The present study investigates the short- and long-term effects of radon ((222)Rn) released from water on the progeny exposure in a thermal spa. For the purposes of this work, the Polichnitos spa was used as a case study. The bathroom was supplied with water containing 110-210 kBq m(-3) of (222)Rn. The (222)Rn concentration in air and the short-lived (222)Rn progenies in attached and unattached form were monitored into the bathroom and the surrounding premises. The equilibrium factor (F-factor) and the unattached fraction were estimated. The results of this study show that water flow during bath filling is by far the dominant mechanism by which (222)Rn is released in the air of the bathroom. The progeny exposure was correlated linearly with the (222)Rn concentration in the entering water. The annual effective dose received by a worker was found to be below the lower limit value of 3 mSv recommended by ICRP 65. The dose limit was exceeded only for water containing more than 300 kBq m(-3).  相似文献   

17.
A complex approach in characterisation of submarine groundwater discharge (SGD) off south-eastern Sicily comprising applications of radioactive and non-radioactive tracers, direct seepage measurements, geophysical surveys and a numerical modelling is presented. SGD fluxes in the Donnalucata boat basin were estimated by direct seepage measurements to be from 4 to 12Ls(-1), which are comparable with the total SGD flux in the basin of 17Ls(-1) obtained from radon measurements. The integrated SGD flux over the Donnalucata coast estimated on the basis of Ra isotopes was around 60m(3)s(-1) per km of the coast. Spatial variations of SGD were observed in the Donnalucata boat basin, the average (222)Rn activity concentration in seawater varied from approximately 0.1kBqm(-3) to 3.7kBqm(-3) showing an inverse relationship with salinity. The continuous monitoring carried out at the site closest to the coast has revealed an inverse relationship of (222)Rn activity concentration on the tide. The (222)Rn concentrations in seawater varied from 2.3kBqm(-3) during high tides to 4.8kBqm(-3) during low tides, thus confirming an influence of the tide on submarine groundwater discharge. Stable isotopes (delta(2)H and delta(18)O) showed that SGD samples consist up to 50% of groundwater. Geo-electrical measurements showed a spatial variability of the salt/fresh water interface and its complex transformation in the coastal zone. The presented results imply that in the studied Donnalucata site there are at least two different sources of SGD, one superficial, represented by mixed fresh water and seawater, and the second one which originates in a deeper limestone aquifer.  相似文献   

18.
In China, as the economy is developing and the population is expanding, some underground buildings have been used as supermarkets, restaurants and entertainment places. Tunnels in mountains are one type of underground building, and the radon (222Rn) level in tunnels is an important issue. Radon levels in different type tunnels appear to differ, and relatively higher levels of 222Rn are associated with particular types of bedrock. The 222Rn levels in tunnels in five different geological characteristics were analyzed. Those built in granite had the highest 222Rn levels with a geometric mean (GM) of 280 Bq m−3, while those built in limestone (GM: 100 Bq m−3) and andesitic porphyry (GM: 96 Bq m−3) were lower. The sequence of 222Rn concentrations was: granite > tuff > quartz sandstone > limestone > andesitic porphyry, and the 222Rn in granite was statistically significantly higher than in limestone and andesitic porphyry. Tunnels built in granite, tuff, quartz sandstone, limestone tended to have higher 222Rn concentrations in summer than in winter, while the reverse tendency was true in andesitic porphyry tunnels. Only the difference in limestone was statistically significant.  相似文献   

19.
Radon-222 emanation fractions were determined for barite scale deposits associated with petroleum production tubing and soil contaminated with naturally occurring radioactive material (NORM). Samples were analyzed for 226Ra concentration, the results of which were used to calculate the 222Rn emanation fraction for the sample. An important parameter determining the overall Rn activity flux from a solid medium, 222Rn emanation fraction represents the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. The primary objective of the study was to determine whether 222Rn emanation fractions from pipe scale and soil from petroleum production sites are similar to those of uranium mill tailings. Pipe scale samples were collected at four sites representing a wide geographical area, and consisted primarily of barite scale where Ra atoms have replaced a fraction of the Ba within the crystal lattice of the scale. Soil samples were collected at five sites, from areas exhibiting elevated surface gamma exposure rates indicating the presence of NORM. For comparison, 226Ra concentrations and 222Rn emanation fraction were also determined for uranium mill tailings samples provided from a site in Utah. Although 2226Ra concentrations from pipe scale samples were similar to those found in uranium mill tailings, 222Rn emanation fractions from scale were generally lower. Emanation fractions from each data set were statistically different from those of mill tailings (p < or = 0.01). The differences are probably due to physical differences between the two media and to the method by which the Ra is deposited in the material. Radon emanation from soils was extremely variable owing not only to differences in physical and chemical soil properties, but also to the means by which NORM has entered the soil. Although additional emanation measurements from other sites are needed, the data collected at these sites indicate that regulations intended to protect human health from 222Rn inhalation should consider the type and properties of the medium in which the NORM is contained, rather than relying strictly on concentrations of the parent 226Ra.  相似文献   

20.
222Rn, 226Ra, 228Ra and U were determined in a total of 552 groundwater samples collected throughout Fujian Province of China. The geometric mean concentrations of 222Rn, 226Ra, 228Ra and total U in the groundwater were 147.8 kBq m-3, 12.7 Bq m-3, 30.2 Bq m-3 and 0.54 microgram kg-1, respectively. High groundwater 222Rn was explained by the predominantly granitic rock aquifers in Fujian. A lifetime risk of 1.7 x 10(-3) was estimated for the ingestion of groundwater 222Rn. High ratios of 228Ra to 226Ra contents (geometric mean of 2.4) and their disproportion suggest that 228Ra should also be measured in the assessment of population doses from drinking water in the regions of high rock or soil 232Th. No significant correlation between the 222Rn concentrations in groundwater and air was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号