首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precipitation, soil moisture, runoff, and vegetation were measured on two, 5- to 10-acre, big sagebrush (Artemisia tridentata) watersheds and two, equally small, beardless bluebunch wheatgrass (Agrophron inerme) watersheds that were converted from big sagebrush in 1967. The watersheds are located near Wolcott, Colorado, at an elevation of 7,200 feet, and are mantled with 2 to 3 feet of silty clay soils. Annual precipitation was about 13.5 inches; about 9 inches occurred as rain or snow from April through October and about 4.5 inches accumulated as a snowpack from November through March. Evapotranspiration was about 2 inches greater in 1968 and 1 inch greater in 1969 from the sagebrush watersheds than from the grass watersheds. With a mature stand of grass in 1970 and 1971 the differences in evapotranspiration were within the range of differences measured during the 3-year calibration period when all four watersheds were sagebrush. Water use was similar in the top 1 foot of soil but slightly more water was used by the grass in the 1- to 2-foot zone and more water being used by the sagebrush below 2 feet. Soil-water potential data indicated that only the big sagebrush used a small amount of water from the fractured shale at depths below 40 inches. Sagebrush used more water in August and September than the grass.  相似文献   

2.
ABSTRACT: Completion of a 1270 acre recreational impoundment (Legend Lake) in the glacial sands of Menominee County, Wisconsin, produced geochemical and hydrologic alterations in some nearby natural lakes. The impoundment was produced by the construction of three dams, one of which proved to be temporary, connecting 9 natural lakes and ponds of 383 acres with 951 acres of flooded lands. Water levels were raised 3–15 feet within the impounded area. Much of the flooded area was peat rich wetland associated with the prior drainage. Water depths are less than 15 feet in 70% of the impoundment. Three seepage lakes, located less than 1/2 mile from the impoundment, experienced shoreline flooding, shoreline and soil erosion, some tree kills, and increased turbidity. These lakes also experienced concentration increases in several chemical constituents which indicate an influx of impoundment water through a regional alternation in the groundwater flow paths. The three lakes were connected by canals, and a 2.3 cfs gravity drain with an auxiliary pumping station was built to return excess water to the outflow of the impoundment. Future projects of this type would benefit from a more extensive hydrologic and geochemical analysis prior to initiation. Had environmental assessments been required at the time of this development, as they now are in Wisconsin for similar projects, some of the problems encountered might have been alleviated.  相似文献   

3.
4.
ABSTRACT: The study of wind generated waves is important because waves affect sediment resuspension in lakes. Measurements of wind velocity and wave elevation were made at three different stations in Lake Okeechobee. Significant wave heights were computed using a direct count from the recorded data, and verified by the root-mean-square value approach. The correlation between wind stress and significant wave height also was analyzed. The data revealed a strong correlation. In addition to field measurements, a Boussinesq-type wind-wave model was developed to simulate wind-generated, long-propagating waves. This model included the effects of wind stress and bottom viscous dissipation. Wave elevation and velocity field were evaluated numerically. A six-day simulation using 1996 wind data was conducted. Simulated significant wave heights were found to agree reasonably well with measured values. A predictive wind-wave model provides information about wind generated waves, which is used to compute bottom shear stresses required for sediment resuspension studies.  相似文献   

5.
ABSTRACT: Water yields from a permanent icefield were increased by 28 percent through surface dusting with carbon black. On July 4, 1972, approximately 15 acres (60,700 m2) of a permanent icefield were treated with 150 lbs. per acre (16.8 g/m2) of commercial carbon black. The icefield was located on the eastern slope of the Colorado Front Range at an elevation of 11,500 feet (3500 m). The carbon black was applied by helicopter using a dry applicator slung below a helicopter. The treatment effect was evaluated by control plot observations of melt and streamflow comparison before and after treatment. The ablation plot studies and runoff comparison with an adjacent watershed both indicated a 28 percent increase in ablation and meltwater runoff, respectively, for the months of July and August. The study indicates icefields could be used as cold-storage reservoirs for use in periods of critical water shortages.  相似文献   

6.
During the early 1930's, more than 340,000 acres of abandoned farmland in New York State were purchased by the State Conservation Department for the planting, growing, and harvesting of trees. Since then, this land has developed from a heavy cover of weeds and brush into dense coniferous woodlands with trees averaging well over 30 feet high. Hydrologic data have been collected since 1932 in Central New York to determine the effect of the reforestation on streamflow. Data are available for three small partly reforested areas and for one non-reforested control area. Intensive statistical analyses of the data from the four study areas were made in 1958. It was determined at that time that significant reductions in total runoff had occurred which were attributed to increases in interception and transpiration. Reductions in peak discharges during the dormant season also were indicated which were attributed to increased interception and sublimation of snowfall, and gradual desynchronization of snowmelt runoff from the wooded and open areas of partly reforested watersheds. Updating of the studies relating to peak discharges was completed in 1967 and indicated that no further changes in relative peaks had taken place since 1958. From this it is concluded that the influence exerted by the forest had become maximum by 1958 and has remained stable since then.  相似文献   

7.
ABSTRACT: Data from 54 well in central and eastern Kansas developed in unconsolidated deposits of Quaternary age indicate that nitrate concentrations are inversely related to the depth of the well screen opening below the water level in the well casing because this relationship was found to exist in an area of Nebraska and in a large area of Kansas, the relationship is generally valid over a wide geo- graphical area. In addition, the data indicate that the incidence of nitrate concentrations exceeding 45 milligrams per liter and nitrate concentrations, in general, are significantly lower in water from wells with screens deeper than 25 feet below the water table in unconfined aquifers or where screens are placed in deep confined aquifers. No concentrations of nitrate greater than 45 milligrams per liter were in obseved wells where screens were deeper than 60 feet below the casing water level. These findings suggest that general placement of well screens as far below the water table as possible in unconfined unconsolidated aquifers in Kansas. and possibly other areas of the Midwest, may be an effective measure in preventing undesirable nitrate concentrations in ground water supplies. particularly in areas where nitrate is a problem.  相似文献   

8.
ABSTRACT: Geomorphic characteristics and spatial frequency of ephemeral concentrated flow paths entering streamside management zones (SMZs) were evaluated to determine the efficiency of best management practices (BMPs) in preventing concentrated overland flow and associated sediment from reaching stream channels. Specifically, SMZs of 30 recently clearcut and site prepared commercial forestry units in the Georgia Piedmont were surveyed to find two types of locations: those where flow and/or sediment from the adjacent silvicultural site entered and moved through SMZs into stream channels (breakthroughs), and those where either flow and/or sediment entered SMZs without reaching stream channels or where no overland flow entered SMZs (successes). A total of 187 breakthroughs were identified on 3,773 total acres. On average, sites featured one breakthrough for every 20 acres of clearcut or site prepared area. The average hydrologic contributing area to a breakthrough was 1 acre. The percentage of the total clearcut or site prepared area contributing to breakthroughs was 5 percent. Approximately 50 percent of all breakthroughs occurred in areas of convergence (swales) and gullies, while 25 percent of all breakthroughs occurred where runoff from roads or skid trails was concentrated. Breakthroughs tended to occur in areas with large contributing area, low litter cover, and steep slopes. However, individually these variables did not differentiate well between breakthroughs and successes. The variables that discriminated best between successes and failures were the product of contributing area and percent bare ground, and the same variable multiplied by average slope. Fourteen percent of the breakthroughs traveled more than 100 feet through SMZs before reaching streams. Results imply that reduction of bare ground, better dispersal of road runoff, introduction of hydraulic resistance to likely flow paths, and targeted extensions of SMZ width may be warranted in improving BMPs on Piedmont forests.  相似文献   

9.
艾比湖湖水很浅,湖底平坦,沉积着巨厚的细沙和淤泥。依据自身特征及其他因素,针对艾比湖水量的收支情况,建立艾比湖的储水量和需水量的数学模型。其中艾比湖湖面面积数据是重要参数之一,利用遥感技术,采用资源卫星影像,结合Modis数据,解译提取获得。通过艾比湖储水量和需水量数据可以进一步预测艾比湖湖面面积的变化趋势,对本地区的生态及农业生产具有指征意义,为决策层制定防治对策提供科学依据。  相似文献   

10.
ABSTRACT: An attempt was made to review all available data on the extent and status of riparian ecosystems in the U.S.A. This report presents a synthesis of the findings, including some estimates of how much land was originally covered by woody riparian vegetation, and how much remains in that condition today. A synopsis of information is presented on the status of riparian ecosystems in each of 10 regions: California, Pacific Northwest, Rocky Mountain, Arid Southwest, Plains-Grasslands, Lake States, Corn Belt, Mississippi Delta, Northeast-Appalachian, and Southeast. Woody riparian plant communities once covered an estimated 75 to 100 million acres of land in the contiguous 48 states. Mankind has converted at least two-thirds of that nationwide acreage to other non-forest land uses and it is estimated that only 25 to 35 million acres of riparian plant communities remain in a near natural condition. Across the country, loss of riparian acreages is directly attributable to water resource development (especially channel modification and water impoundment), floodplain clearing for agriculture, and urbanization. In many states of the arid west, the midwest, and the lower Mississippi alluvial valley, riparian vegetation has been reduced in area by more than 80 percent. Riparian woodlands are one of this country's most heavily modified natural vegetation types.  相似文献   

11.
ABSTRACT: The project described in this report was undertaken by the Louisiana State Planning Office to establish the extent of backwater flooding in Louisiana in April 1975. Band 7 Landsat imagery, enlarged to a scale of 1:250,000 was used to visually identify flooded areas. Inundated areas were delineated on overlays keyed to 1:250,000 U.S. Geological Survey topographic quadrangles. Tabular data identifying acres flooded, according to land use type, were derived by merging the flood map overlays with computerized 1972 land use data. Approximately 1.12 million acres of the state were inundated by flood waters. The total acreage and land use types affected by flooding were determined within 72 hours from the time the flood areas were imaged. Flooded maps were prepared for 26 parishes. Field observations were made by Louisiana Cooperative Extension Service county agents in order to determine the accuracy of parish flood maps and flood acreage figures by land use type. Results indicated that this was a fast, accurate, and relatively inexpensive method of compiling flood data for disaster planning and postflood analysis.  相似文献   

12.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

13.
Nine hectares (23 acres) of a degraded section of Patuxent Research Refuge in Laurel, Maryland, USA, were converted to wetland habitat by the Baltimore Gas and Electric Company in 1994. The wetlands were created as mitigation for 5.7 ha (14 acres) of wetlands that were impacted as part of the construction of an 8.5-km (5.3-mile) 500-kV overhead transmission line on the refuge. The area consists of a created forested wetland of 5.5 ha (13.5 acres), a seasonally inundated green-tree reservoir of 7.6 ha (6.5 acres), and an impounded pond wetland of 1.2 ha (3 acres). Construction included the planting of 6131 trees, 4276 shrubs, and 15,102 emergent plants. Part of the site has been studied intensively since completion and survival of trees and shrubs after two years was 88%. Measurements of these transplants have shown growth greater than on other created sites in Maryland. Grasses and other herbaceous vegetation were dominant plants in the meter-square plots in the first two years of sampling of the created forested wetland. Wildlife surveys for birds, mammals, amphibians, and reptiles have revealed diverse communities. Although these communities represent species consistent with open habitat, more typical forest species should colonize the area as it undergoes succession into a more mature forested wetland. The creation, management, and research of this mitigation site represents an excellent example of a partnership between a private electric power company and a federal wildlife refuge. This partnership has increased local biodiversity and improved regional water quality of the Patuxent River and the Chesapeake Bay.  相似文献   

14.
Ecological impacts of water-quality problems have developed in the western United States resulting from the disposal of seleniferous agricultural wastewater in wetland areas. Overt effects of selenium toxicosis occurred at five areas where deformities of wild aquatic birds were similar to those first observed at Kesterson National Wildlife Refuge in the west-central San Joaquin Valley of California. These areas are: Tulare Lake Bed Area, California, Middle Green River Basin, Utah, Kendrick Reclamation Project Area, Wyoming, Sun River Basin, Montana, and Stillwater Wildlife Management Area, Nevada. Potential for ecological damage is indicated at six more sites in Oregon, Colorado, the Colorado/Kansas border, and South Dakota out of 16 areas in 11 states where biological tissue data were collected. This conclusion is based on the fact that selenium bioaccumulated in bird livers to median levels that had exceeded or were in the range associated with adverse reproductive effects. Selenium concentrations in samples of fish and bird eggs support these conclusions at a majority of these areas. Reason for concern is also given for the lower Colorado River Valley, although this is not exclusively a conclusion from these reconnaissance data. Biogeochemical conditions and the extent of selenium contamination of water, bottom sediment, and biota from which this assessment was made are given here. In a companion paper, the biogeochemical pathway postulated for selenium contamination to take place from natural geologic sources to aquatic wildlife is defined.  相似文献   

15.
There is a lack of information on how fertilization and initial Mehlich-3 phosphorus (M3P) interact to affect water soluble P (WSP) in soils. Our objectives were to (i) quantify the relationship between WSP and M3P for four textural diverse benchmark soils of North Carolina (NC) and (ii) quantify the change in WSP concentrations following P additions to soils over a wide range of initial M3P. Soils known to represent a wide range in M3P were collected from an Autryville loamy sand (loamy, siliceous, subactive, thermic Arenic Paleudults), Wasda muck (fine-loamy, mixed, semiactive, acid, thermic Histic Humaquepts), Georgeville silt loam (fine, kaolinitic, thermic Typic Kanhapludults), and Pacolet sandy clay loam (fine, kaolinitic, thermic Typic Kanhapludults) and analyzed for M3P, Fe, Al, and WSP. An incubation study was also conducted where four samples representing a range in M3P from each series were fertilized at rates of 150 and 300 kg P ha(-1), and WSP was measured at 1, 7, and 21 d after fertilization. The Wasda muck exhibited a change point at 115 mg P kg(-1) across a broad range of M3P concentrations (60-238 mg kg(-1)) while Autryville, Georgeville, and Pacolet series (with ranges in M3P of 32-328, 119-524, 0-1034 mg P kg(-1), respectively) maintained linear relationships between WSP and M3P. For the fertilized soils, significant increases in WSP occurred regardless of P rate. Yet, WSP concentrations were greater in soils with greater initial M3P. Thus, these data suggest that shifting animal waste applications to fields of relatively lower M3P concentrations would have an immediate impact on reducing risk for P losses, if all other factors are equal.  相似文献   

16.
ABSTRACT: Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged streams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the relationship between average discharge and drainage area in streams draining less than 200 acres was consistent with that of larger basins in the size range (> 10 square miles) typically gaged by the U.S. Geological Survey (USGS). This study was designed to evaluate predictors of average discharge in small ungaged streams for regulatory purposes, since many stream regulations, as well as recommendations for best management practices, are based on measures of stream size, including average discharge. The average discharge/drainage area relationship determined from gages on large streams held true down to the perennial flow initiation point. For the southern Appalachians, basin size corresponding to perennial flow is approximately 19 acres, ranging from 11 to 32 acres. There was a strong linear relationship (R2= 0.85) between average discharge and drainage area for all streams draining between 16 and 200 acres, and the average discharge for these streams was consistent with that predicted by the USGS Unit Area Runoff Map for Georgia. Drainage area was deemed an accurate predictor of average discharge, even in very small streams. Channel morphological features, such as active channel width, cross‐sectional area, and bankfull flow predicted from Manning's equation, were not accurate predictors of average discharge. Monthly baseflow statistics also were poor predictors of average discharge.  相似文献   

17.
ABSTRACT: The current Lake Okeechobee regulation schedule is two feet higher than previous schedules that were in operation during the early 1970's. Its implementation was in response to prolonged periods of drought that occurred during the 1960's and early 1970's and the large increases in consumptive uses that were projected, and are presently occurring in south Florida. The additional storage provided by the schedule undoubtedly helped prevent more severe water shortages during the record setting 1980–1982 drought. However, two environmental concerns associated with the present schedule surfaced in recent years with the return to more normal rainfall conditions. First, the present schedule allows frequent high water conditions to exist in the lake that appear to be stressful to the unique littoral zone habitat of the lake. Second, the allowable buildup of storage prior to the dry season, combined with the large required decrease in storage prior to the hurricane (wet) season, contribute to the need for large regulation releases to tidewater. These large discharges have undesirable impacts on ecosystems of the downstream estuaries. This paper presents an alternative schedule that better meets the needs of the estuarine habitats without negatively impacting the other objectives of managing the lake.  相似文献   

18.
ABSTRACT: This paper presents a field investigation of collecting hydrodynamic and sediment data in Lake Okeechobee with analyses examining mechanisms affecting sediment resuspension in the lake. Lake Okeechobee is a large subtropical lake located in south central Florida. Three‐dimensional flow velocities, suspended solids concentrations (SSC), and temperatures at four locations were measured from January 18 to March 5, 2000. Analyses of these data indicate that wind is the dominant factor in driving flow velocities and therefore transporting suspended solids. Wind direction also affects the SSC, especially in the north central and west littoral areas of the lake. The surface and bottom velocity components frequently flow in opposite directions, forming a stratification of the water column and preventing suspended solids from settling out. This retention of SSC in the water column may have a strong impact on the water quality of Lake Okeechobee. This study provides valuable storm event data and mechanism analyses, which will improve our understanding of the transport of suspended solids, thermal exchanges, and flow patterns within Lake Okeechobee.  相似文献   

19.
ABSTRACT: Combinations of vegetation and structure were applied to control streambank erosion along incised stream channels in northwest Mississippi. Eleven sites along seven channels with contributing drainage areas ranging from 12–300 km2 were used for testing. Tested configurations included eroding banks protected by vegetation alone, vegetation with structural toe protection, vegetation planted on re-graded banks, and vegetation planted on regraded banks with toe protection. Monitoring continued for up to 10 years, and casual observation for up to 18 years. Sixteen woody and 13 nonwoody species were tested. Native woody species, particularly willow, appear to be best adapted to stream-bank environments. Sericea lespedeza and Alamo switchgrass were the best nonwoody species tested. Vegetation succeeded in reaches where the bed was not degrading, competition from kudzu was absent, and bank slopes were stabilized by grading or toe protection. Natural vegetation invaded planted and unplanted stable banks composed of fertile soils. Designs involving riprap toe protection in the form of a longitudinal dike and woody vegetation appeared to be most cost-effective. The exotic vine kudzu presents perhaps the greatest long-term obstacle to restoring stable, functional riparian zones along incised channels in our region. (KEY TERMS: vegetation; streambank protection; bioengineering; stream restoration; channel incision; riparian zone.)  相似文献   

20.
ABSTRACT: In order to choose among “best management practices,” forest managers need to predict sediment yield to perennial streams following various forest land operations. The “universal soil loss equation” (USLE) is not directly applicable to forest operations because of the heterogenous soil surface conditions left by harvesting, site preparation, and planting. A sediment hazard index is proposed, to be based on the amount of exposed mineral soil and its proximity to streams. The model offered includes rainfall erosivity, soil erodibility and average land slope, together with the index W. A paired watershed experiment in the central Georgia Piedmont was used to estimate parameters in the model. The experimental basin (80 acres) was clearcut, drum roller chopped twice, and planted by machine. The standard error of estimate of sediment yield was computed to be about 50/lbs/ac per sampling period (four months). Use of William's erogivity index (storm flow times peak flow) reduced the standard error to 33/lbs/ac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号