共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Life cycle impact assessment (LCIA) is performed to quantitatively evaluate all environmental impacts from products, systems, processes and services. However, LCIA does not always provide valuable information for choosing among alternatives with different specifications, functionalities and lifetimes. The objectives of this study are (1) to propose environmental indicators to evaluate environmental efficiency and value qualitatively and quantitatively on the basis of analogies to financial and economic indicators, and (2) to present the application of the indicators. Incremental evaluation using a reference is employed to obtain the environmental indicators. The environmental efficiency indicators are conceptually based on the ratios of reduced environmental burdens returned to environmental burdens required: environmental return on investment, environmental payback period and environmental internal rate of return. The environmental value indicator is the sum of all reduced and required environmental burdens: i.e., environmental net present value. All the environmental indicators can be used to compare and rank the environmental efficiencies or values of alternatives. The environmental efficiency indicators can be applied to a new environmental labeling. The concept of eco-efficiency labeling is developed by combining the environmental efficiency indicators with financial indicators. A case study is performed to illustrate the necessity and importance of the environmental indicators. These environmental indicators can help easily communicate LCIA results in the field of environmental management. 相似文献
3.
Methodological aspects of life cycle assessment of integrated solid waste management systems 总被引:1,自引:0,他引:1
Environmental life cycle assessment (LCA) developed rapidly during the 1990s and has reached a certain level of harmonisation and standardisation. LCA has mainly been developed for analysing material products, but can also be applied to services, e.g. treatment of a particular amount of solid waste. This paper discusses some methodological issues which come into focus when LCAs are applied to solid waste management systems. The following five issues are discussed. (1) Upstream and downstream system boundaries: where is the ‘cradle’ and where is the ‘grave’ in the analysed system? (2) Open-loop recycling allocation: besides taking care of a certain amount of solid waste, many treatment processes also provide additional functions, e.g. energy or materials which are recycled into other products. Two important questions which arise are if an allocation between the different functions should be made (and if so how), or if system boundaries should be expanded to include several functions. (3) Multi-input allocation: in waste treatment processes, different materials and products are usually mixed. In many applications there is a need to allocate environmental interventions from the treatment processes to the different input materials. The question is how this should be done. (4) Time: emissions from landfills will continue for a long time. An important issue to resolve is the length of time emissions from the landfill should be considered. (5) Life cycle impact assessment: are there any aspects of solid waste systems (e.g. the time horizon) that may require specific attention for the impact assessment element of an LCA? Although the discussion centres around LCA it is expected that many of these issues are also relevant for other types of systems analyses. 相似文献
4.
Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives. 相似文献
5.
6.
Catherine Buhé Gilbert Achard Jean François Le Téno Jean Luc Chevalier 《Resources, Conservation and Recycling》1997,20(4):227-243
The life cycle analysis of a product enables one to assess its environmental quality. A simple, transparent method taking into account the processes of recycling in the life cycle is developed here. It permits dealing with all types of open loops of all sectors. The principles on which the proposed method is grounded are discussed. 相似文献
7.
8.
Joris Koornneef Tim van Keulen Andr Faaij Wim Turkenburg 《International Journal of Greenhouse Gas Control》2008,2(4):448
In this study the methodology of life cycle assessment has been used to assess the environmental impacts of three pulverized coal fired electricity supply chains with and without carbon capture and storage (CCS) on a cradle to grave basis. The chain with CCS comprises post-combustion CO2 capture with monoethanolamine, compression, transport by pipeline and storage in a geological reservoir. The two reference chains represent sub-critical and state-of-the-art ultra supercritical pulverized coal fired electricity generation. For the three chains we have constructed a detailed greenhouse gas (GHG) balance, and disclosed environmental trade-offs and co-benefits due to CO2 capture, transport and storage. Results show that, due to CCS, the GHG emissions per kWh are reduced substantially to 243 g/kWh. This is a reduction of 78 and 71% compared to the sub-critical and state-of-the-art power plant, respectively. The removal of CO2 is partially offset by increased GHG emissions in up- and downstream processes, to a small extent (0.7 g/kWh) caused by the CCS infrastructure. An environmental co-benefit is expected following from the deeper reduction of hydrogen fluoride and hydrogen chloride emissions. Most notable environmental trade-offs are the increase in human toxicity, ozone layer depletion and fresh water ecotoxicity potential for which the CCS chain is outperformed by both other chains. The state-of-the-art power plant without CCS also shows a better score for the eutrophication, acidification and photochemical oxidation potential despite the deeper reduction of SOx and NOx in the CCS power plant. These reductions are offset by increased emissions in the life cycle due to the energy penalty and a factor five increase in NH3 emissions. 相似文献
9.
Synthesis of distributed wastewater treatment plants (WTPs) has focused on cost reduction, but never on the reduction of environmental impacts. A mathematical optimization model was developed in this study to synthesize existing distributed and terminal WTPs into an environmentally friendly total wastewater treatment network system (TWTNS) from a life cycle perspective. Life cycle assessment (LCA) was performed to evaluate the environmental impacts of principal contributors in a TWTNS. The LCA results were integrated into the objective function of the model. The mass balances were formulated from the superstructure model, and the constraints were formulated to reflect real wastewater treatment situations in industrial plants. A case study validated the model and demonstrated the effect of the objective function on the configuration and environmental performance of a TWTNS. This model can be used to minimize environmental impacts of a TWTNS in retrofitting existing WTPs in line with cleaner production and sustainable development. 相似文献
10.
The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy) 总被引:1,自引:0,他引:1
The Vercelli rice district in northern Italy plays a key role in the agri-food industry in a country which accounts for more than 50% of the EU rice production and exports roughly 70%. However, although wealth and jobs are created, the sector is said to be responsible for environmental impacts that are increasingly being perceived as topical. As a complex and comprehensive environmental evaluation is necessary to understand and manage the environmental impact of the agri-food chain, the Life Cycle Assessment (LCA) methodology has been applied to the rice production system: from the paddy field to the supermarket. The LCA has pointed out the magnitude of impact per kg of delivered white milled rice: a CO2eq emission of 2.9 kg, a primary energy consumption of 17.8 MJ and the use of 4.9 m3 of water for irrigation purposes. Improvement scenarios have been analysed considering alternative rice farming and food processing methods, such as organic and upland farming, as well as parboiling. The research has shown that organic and upland farming have the potential to decrease the impact per unit of cultivated area. However, due to the lower grain yields, the environmental benefits per kg of the final products are greatly reduced in the case of upland rice production and almost cancelled for organic rice. LCA has proved to be an effective tool for understanding the eco-profile of Italian rice and should be used for transparent and credible communication between suppliers and their customers. 相似文献
11.
As the second largest corn producer in this world, China has abundant corn straw resources. The study assessed the energy balance and global warming potential of corn straw-based bioethanol production and utilization in China from a life cycle perspective. The results revealed that bioethanol used as gasoline and diesel blend fuel could reduce global warming potential by 10%–97% and 4%–96%, respectively, as compared to gasoline and diesel for transport. The total global warming potential, net global warming potential, net energy, and Net Energy Ratio per MJ ethanol generated from corn straw-based bioethanol system are estimated to be 0.20 kg CO2-eq, 0.012 kg CO2-eq, 0.60 MJ, and 1.87, respectively. By using sensitivity analysis, we found that the collected coefficient and compressing density of straw have a more obvious influence on energy balance; transportation distance has a more obvious influence on global warming potential emission factor. The by-products may be utilized as fertilizer, animal feed, cement replacement, or high-value lignin chemicals, which make a contribution to offsetting 0.28 MJ per MJ ethanol of energy consumption. 相似文献
12.
Life cycle assessment of waste paper management: The importance of technology data and system boundaries in assessing recycling and incineration 总被引:2,自引:0,他引:2
Hanna Merrild Anders Damgaard Thomas H. Christensen 《Resources, Conservation and Recycling》2008,52(12):1391-1398
The significance of technical data, as well as the significance of system boundary choices, when modelling the environmental impact from recycling and incineration of waste paper has been studied by a life cycle assessment focusing on global warming potentials. The consequence of choosing a specific set of data for the reprocessing technology, the virgin paper manufacturing technology and the incineration technology, as well as the importance of the recycling rate was studied. Furthermore, the system was expanded to include forestry and to include fossil fuel energy substitution from saved biomass, in order to study the importance of the system boundary choices. For recycling, the choice of virgin paper manufacturing data is most important, but the results show that also the impacts from the reprocessing technologies fluctuate greatly. For the overall results the choice of the technology data is of importance when comparing recycling including virgin paper substitution with incineration including energy substitution. Combining an environmentally high or low performing recycling technology with an environmentally high or low performing incineration technology can give quite different results. The modelling showed that recycling of paper, from a life cycle point of view, is environmentally equal or better than incineration with energy recovery only when the recycling technology is at a high environmental performance level. However, the modelling also showed that expanding the system to include substitution of fossil fuel energy by production of energy from the saved biomass associated with recycling will give a completely different result. In this case recycling is always more beneficial than incineration, thus increased recycling is desirable. Expanding the system to include forestry was shown to have a minor effect on the results. As assessments are often performed with a set choice of data and a set recycling rate, it is questionable how useful the results from this kind of LCA are for a policy maker. The high significance of the system boundary choices stresses the importance of scientific discussion on how to best address system analysis of recycling, for paper and other recyclable materials. 相似文献
13.
Jan M. Kooijman 《Environmental management》1993,17(5):575-586
The functions of packaging are derived from product requirements, thus for insight into the environmental effects of packaging
the actual combination of product and package has to be evaluated along the production and distribution system. This extension
to all related environmental aspects adds realism to the environmental analysis and provides guidance for design while preventing
a too detailed investigation of parts of the production system. This approach is contrary to current environmental studies
where packaging is always treated as an independent object, neglecting the more important environmental effects of the product
that are influenced by packaging.
The general analysis and quantification stages for this approach are described, and the currently available methods for the
assessment of environmental effects are reviewed. To limit the workload involved in an environmental assessment, a step-by-step
analysis and the use of feedback is recommended. First the dominant environmental effects of a particular product and its
production and distribution are estimated. Then, on the basis of these preliminary results, the appropriate system boundaries
are chosen and the need for further or more detailed environmental analysis is determined. For typical food and drink applications,
the effect of different system boundaries on the outcome of environmental assessments and the advantage of the step-by-step
analysis of the food supply system is shown. It appears that, depending on the consumer group, different advice for reduction
of environmental effects has to be given. Furthermore, because of interrelated environmental effects of the food supply system,
the continuing quest for more detailed and accurate analysis of the package components is not necessary for improved management
of the environmental effects of packaging. 相似文献
14.
Ynte K. Van Dam 《Environmental management》1996,20(5):607-614
When marketing environmentally responsible packaged products, the producer is confronted with consumer beliefs concerning the environmental friendliness of packaging materials. When making environmentally conscious packaging decisions, these consumer beliefs should be taken into account alongside the technical guidelines. Dutch consumer perceptions of the environmental friendliness of packaged products are reported and compared with the results of a life-cycle analysis assessment. It is shown that consumers judge environmental friendliness mainly from material and returnability. Furthermore, the consumer perception of the environmental friendliness of packaging material is based on the postconsumption waste, whereas the environmental effects of production are ignored. From the consumer beliefs concerning environmental friendliness implications are deduced for packaging policy and for environmental policy. 相似文献
15.
This study proposes a technical procedure based on a life cycle approach for implementation of the environmental sustainability assessment (ESA) of several waste-to-energy (WtE) plants located in Spain. This methodology uses two main variables: the natural resources sustainability (NRS) and the environmental burdens sustainability (EBS). NRS includes the consumption of energy, materials, and water, whereas EBS considers five burdens to air, five burdens to water, and two burdens to land. To reduce the complexity of ESA, all variables were normalised and weighted using the threshold values proposed in the European Pollutant Release and Transfer Register regulation. The results showed the plants studied had a greater consumption of natural resources than Spain, ranging from 1.1 to 2.0 times higher than the Spanish reference consumption. The comparison of Spain with the BREF reference on waste incineration showed that only in the variable related to materials, did Spain have a lower consumption (1.80 times lower). In terms of EBS, air and land impacts were the highest contributors to global burden. The WtE plants presented higher burdens to air and water than Spain, whereas only one plant exceeded the average burden to land of Spain. Finally, this paper demonstrated the usefulness of the ESA methodology to reduce the complexity of LCA and assist the decision-making process in choosing the best option from an environmental point of view. This procedure can be used to obtain an overview of the environmental performance of WtE plants, as well as to assess individual burdens and thereby determine the main environmental hotspots, thereby improving the critical points of the process. 相似文献
16.
A life cycle based multi-objective optimization model for the management of computer waste 总被引:1,自引:0,他引:1
The accelerating pace of waste generation from used electrical and electronic equipment is of growing global concern. Within this waste stream, computer hardware is quite significant in terms of both volume and risk to the environment because of the hazardous materials within it. The waste management hierarchy of prevention, reuse, recycle, treatment and disposal in landfill is accepted as a universal guideline for waste management. The contemporary concept of integrated solid waste management is very complex comprising of not only the environmental aspects or the technical aspects of the waste management hierarchy, but also incorporating economic, institutional, perceived risk and social issues in the context of complete life cycle of waste. Moreover, when to shift from one stage of hierarchy to another, is an involved decision warranting inclusion of several case specific issues. This paper presents a life cycle based multi-objective model that can help decision makers in integrated waste management. The proposed model has been applied to a case study of computer waste scenario in Delhi, India, which apart from having computer waste from its native population receives large quantities of imported second hand computers. The model has been used to evaluate management cost and reuse time span or life cycle of various streams of computer waste for different objectives of economy, perceived risk and environmental impact. The model results for different scenarios of waste generation have been analyzed to understand the tradeoffs between cost, perceived risk and environmental impact. The optimum life cycle of a computer desktop was observed to be shorter by 25% while optimizing cost than while optimizing impact to the environment or risk perceived by public. Proposed integrated approach can be useful for determining the optimum life cycle of computer waste, as well as optimum configuration of waste management facilities, for urban centers where computer waste related issues are of growing concern. 相似文献
17.
A comprehensive life cycle assessment of asphalt pavements was conducted including hot mix asphalt (HMA), warm mix asphalt (WMA) with the addition of synthetic zeolites, and asphalt mixes with reclaimed asphalt pavement (RAP). The environmental impacts associated with energy consumption and air emissions were assessed, as well as other environmental impacts resulting from the extraction and processing of minerals, binders and chemical additives; asphalt production; transportation of materials; asphalt paving; road traffic on the pavement; land use; dismantling of the pavement at the end-of-life and its landfill disposal or recycling. Monte Carlo simulations were also conducted to take into account the variability of critical input parameters. Taking into account the entire life cycle, the impacts of zeolite-based WMA pavements were almost equal to the impacts of HMA pavements with the same RAP content. The reduction in the impacts of WMA resulting from the lowering of the manufacturing temperature was offset by the greater impacts of the materials used, especially the impacts of the synthetic zeolites. Moreover, by comparing asphalt mixes with different RAP contents, it was shown that the impacts of asphalt mixes were significantly reduced when RAP was added. All endpoint impacts as well as climate change, fossil depletion and total cumulative energy demand were decreased by 13–14% by adding 15% RAP. A key advantage of WMA is the potentially greater use of RAP. Thus, the decrease in the impacts achieved by adding large amounts of RAP to WMA could turn these asphalt mixes into a good alternative to HMA in environmental terms. 相似文献
18.
AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver 总被引:1,自引:0,他引:1
Navid Hossaini Bahareh Reza Sharmin Akhtar Kasun Hewage 《Journal of Environmental Planning and Management》2015,58(7):1217-1241
Construction and building industry is in dire need for developing sustainability assessment frameworks that can evaluate and integrate related environmental and socioeconomic impacts. This paper discusses an analytic hierarchy process (AHP) based sustainability evaluation framework for mid-rise residential buildings based on a broad range of environmental and socioeconomic criteria. A cradle to grave life cycle assessment technique was applied to identify, classify, and assess triple bottom line (TBL) sustainability performance indicators of buildings. Then, the AHP was applied to aggregate the impacts into a unified sustainability index. The framework is demonstrated through a case study to investigate two six storey structural systems (i.e. concrete and wood) in Vancouver, Canada. The results of this paper show that the environmental performance of a building in Canada, even in regions with milder weather such as Vancouver, is highly dependent on service life energy, rather than structural materials. 相似文献
19.
In this study, the environmental impact of recycling portable nickel–cadmium (NiCd) batteries in Sweden is evaluated. A life cycle assessment approach was used to identify life cycle activities with significant impact, the influence of different recycling rates and different time boundaries for emissions of landfilled metals. Excluding the user phase of the battery, 65% of the primary energy is used in the manufacture of batteries while 32% is used in the production of raw materials. Metal emissions from batteries to water originate (96–98%) from landfilling and incineration. The transportation distance for the collection of batteries has no significant influence on energy use and emissions. Batteries manufactured with recycled nickel and cadmium instead of virgin metals have 16% lower primary energy use. Recycled cadmium and nickel metal require 46 and 75% less primary energy, respectively, compared with extraction and refining of virgin metal. Considering an infinite time perspective, the potential metal emissions are 300–400 times greater than during the initial 100 years. From an environmental perspective, the optimum recycling rate for NiCd batteries tends to be close to 100%. It may be difficult to introduce effective incitements to increase the battery collection rate. Cadmium should be used in products that are likely to be collected at the end of their life, otherwise collection and subsequent safe storage in concentrated form seems to offer the best solution to avoid dissipative losses. 相似文献
20.
Life cycle assessment (LCA) can be successfully applied to municipal solid waste (MSW) management systems to identify the overall environmental burdens and to assess the potential environmental impacts. In this study, two methods used for current MSW management in Phuket, a province of Thailand, landfilling (without energy recovery) and incineration (with energy recovery), are compared from both energy consumption and greenhouse gas emission points of view. The comparisons are based on a direct activity consideration and also a life cycle perspective. In both cases as well as for both parameters considered, incineration was found to be superior to landfilling. However, the performance of incineration was much better when a life cycle perspective was used. Also, landfilling reversed to be superior to incineration when methane recovery and electricity production were introduced. This study reveals that a complete picture of the environmental performance of MSW management systems is provided by using a life cycle perspective. 相似文献