首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
通过构建室内模拟系统,利用同位素示踪技术研究过量外源NO3-在微环境中的归趋及生长期的穗花狐尾藻(Myriophyllum spicatum L.)在外源氮迁移转化中的作用.结果表明:在穗花狐尾藻组,反硝化作用、微生物固定、沉水植物吸收、异化硝酸盐还原成氨(DNRA)和转化为可溶性有机氮(DON)的去除作用分别占添加15N的47.54%、25.24%、12.76%、0.52%、1.21%;在对照组,反硝化作用、微生物固定、DNRA作用和转化为DON的去除作用分别占添加15N的32.74%、30.79%、0.54%、5.83%.在穗花狐尾藻组和对照组中约87.24%和69.90%的NO3-进行了转化.反硝化作用是去除两处理组中NO3-的主要方式,其次是微生物的固定作用,穗花狐尾藻的直接吸收也对NO3-的去除起到重要作用,DNRA作用和DON对NO3-的去除作用较小.穗花狐尾藻促进了反硝化作用,加快了NO3-在微环境中的迁移转化,直接或间接地促进了微环境对外源NO3-的去除.  相似文献   

2.
陈韬  邹子介  李剑沣 《环境工程》2017,35(10):66-70
通过构建模拟实验,利用~(15)N同位素示踪技术研究在生物滞留系统中碳源对生物滞留系统中硝酸盐异化还原成铵(DNRA)的影响。结果表明:5个处理组(葡萄糖50,100,150,200,250 mg/L)中NO_3~-发生转化的量分别为41.1%、47.9%、50.7%、56.2%和57.6%。以葡萄糖为碳源,初始浓度为100 mg/L时,DNRA作用效果最显著,~(15)N-NH_4~+含量占初始添加~(15)N的24.7%;初始浓度为250 mg/L时,DNRA作用最弱,~(15)N-NH_4~+含量占初始添加~(15)N的13.7%。反硝化和DNRA作用同时进行,系统中~(15)N-NO_3~-含量的减少均伴随着DNRA过程中间产物~(15)N-NO_2~-含量的积累和最终产物~(15)N-NH+4含量的增加。  相似文献   

3.
3种生物滞留设计对城市地表径流溶解性氮的去除作用   总被引:4,自引:2,他引:2  
城市地表径流溶解性氮(N)的有效控制具有挑战性.2015构建了3种不同设计的生物滞留设施:壤砂种植紫穗狼尾草(CB)、壤砂种植紫穗狼尾草设置饱和带(MB1)、壤砂种植紫穗狼尾草设置饱和带并添加10%木块(MB2).在模拟城市地表径流水文、水质变化条件下,研究3种生物滞留种植植物、设置饱和带以及添加碳源对城市地表径流溶解性N(NH_4~+-N、NO_3~--N)的去除作用.通过为期1年试验监测表明,在进水NH_4~+-N浓度平均值为(5.45±2.21)mg·L-1情况下,3种生物滞留对NH_4~+-N均具有显著的去除作用(去除率95%).基质吸附、硝化与植物吸收是生物滞留有效去除城市地表径流NH_4~+-N的主要途径.在进水NO_3~--N平均值为(5.88±2.32)mg·L-1情况下,CB、MB1和MB2出水NO_3~--N浓度的平均值分别为(4.04±2.64)、(0.84±1.18)和(0.26±0.48)mg·L-1,相应去除率分别为31.3%、85.7%和95.6%.生物滞留种植紫穗狼尾草、设置饱和带以及添加碳源均可显著降低出水NO_3~--N浓度,减少NO_3~--N淋溶输出,提高NO_3~--N去除率.植物吸收和微生物反硝化是生物滞留去除NO_3~--N的主要途径.进水NO_3~--N浓度、水量、间隔天数是影响生物滞留出水NO_3~--N浓度的主要因素.生物滞留种植紫穗狼尾草、设置饱和带并添加碳源,在水文、水质变化情况下,仍可有效去除城市地表径流溶解性N.  相似文献   

4.
谢柄柯  张玉  王晓伟  孙超越  周集体 《环境科学》2016,37(10):3955-3962
微生物的硝酸盐异化还原为铵(DNRA)过程对自然界中铵根离子的存在和转化具有重要影响,然而关于SRB菌株DNRA过程影响和机制尚未探明.本文考察了实验室筛选的SRB菌株Desulfovibrio sp.CMX的DNRA能力、影响因素及其影响机制.结果表明,无外加氮源的情况下,分别以10 mmol·L-1NO_3~-和NO_2~-作为唯一电子受体,菌株Desulfovibrio sp.CMX最终NH_4~+生成率分别达到85.8%和97.3%,且无N2和N2O等副产物产生.实验探究了不同外加氮源、不同初始浓度的SO_4~(2-)、S~(2-)对菌株DNRA过程的影响.酵母浸粉作为外加氮源可促进菌株的生长和代谢从而促进菌株DNRA过程;SO_4~(2-)对于NO_3~-还原为NO_2~-阶段起促进作用,而对NO_2~-还原为NH_4~+阶段起抑制作用,综合两方面影响,最终表现出对菌株DNRA过程的抑制作用;S~(2-)对菌株生长及DNRA过程都表现出抑制作用,且S~(2-)浓度越高抑制作用越强,当S~(2-)浓度达到6 mmol·L-1后,S~(2-)对于NO_3~-还原为NO_2~-阶段的抑制作用强于NO_2~-还原为NH_4~+阶段的抑制作用,NO_3~-还原为NO_2~-速率低于NO_2~-还原为NH_4~+速率,此时体系中不再有NO_2~-的积累.  相似文献   

5.
蓝藻水华对太湖水柱反硝化作用的影响   总被引:5,自引:4,他引:1  
反硝化作用是湖泊水体最主要的脱氮过程,对减轻湖泊的氮素污染和富营养化控制具有重要意义.蓝藻水华暴发和衰亡可能会通过改变水体氮素循环途径及微环境来促使反硝化作用直接在水柱中发生,加速氮的去除.为了验证这一假设,取太湖湖水添加不同生物量的蓝藻和连续10 d的NO_3~--N、PO_4~(3-)-P营养盐,进行蓝藻生长与降解对反硝化影响的模拟实验,测定蓝藻水华期水体藻类生物量和各形态氮浓度的动态变化,同时利用~(15)N同位素添加培养结合膜进样质谱仪(MIMS)实时定量测定反硝化速率.结果表明,蓝藻在生长期吸收氮素转变为颗粒氮,在衰亡期藻细胞通过降解矿化释放了大量的NH_4~+-N,继而转化为NO_3~--N,为反硝化作用提供底物,是大幅度促进水体反硝化作用的关键;反硝化速率(以N2计,下同)最高达到(1 614. 52±301. 57)μmol·(m~2·h)~(-1),是同时期最低蓝藻生物量组反硝化速率[(534. 45±242. 18)μmol·(m~2·h)~(-1)]的3倍,实验结束时添加初始蓝藻生物量倍数最高组的TN去除率达最高(40. 02%),是未添加蓝藻组TN去除率(17. 72%)的2. 26倍,说明蓝藻堆积会显著促进反硝化作用的强度,加速水体氮素的去除.蓝藻衰亡时反硝化速率的快慢受NH_4~+浓度的影响显著,表明附着在藻团的微生物的耦合硝化-反硝化作用是氮盐去除的主要途径.本研究结果表明,水华蓝藻生长期快速吸收氮素转变为颗粒氮,蓝藻死亡降解后通过耦合硝化-反硝化作用加速氮素去除,这可能是太湖夏季氮素浓度降低的原因之一.  相似文献   

6.
螺-草水质净化系统氮素环境归趋的实验研究   总被引:1,自引:0,他引:1  
通过构建螺-草模拟系统并利用稳定同位素示踪技术研究池塘螺-草水质净化系统中氮素的环境归趋,结果表明,以底泥为基质的螺-草系统中,实验结束后苦草湿重增加了580%,分株数增加了6.6株,苦草根部吸收储存了1.07%的15N,苦草茎叶吸收储存了7.74%的15N,环棱螺吸收储存较少,只占0.06%,底泥滞留了5.73%的15N.结果分析表明:螺-草水质净化系统中苦草对水体中溶解态氮的吸收较少,沉积物是苦草生长的主要营养源;水体中氨氮主要通过沉积物-水界面进行迁移转化,大部分被苦草根系吸收利用转化为生物体,少部分通过硝化/反硝化作用去除,其余则滞留于沉积物;苦草是系统中氮素去除的最终载体,环棱螺的存在通过促进苦草生长及加强泥-水界面硝化和反硝化作用来加快系统中氮素的去除.因此,在养殖的不同阶段合理配置螺-草结构是整个养殖过程中水质调控的关键.  相似文献   

7.
太湖西部河湖氮污染物来源及转化途径分析   总被引:6,自引:2,他引:4  
通过2014年枯水、丰水两期监测,综合分析了太湖西部入湖河流与湖区水体及其沉积物的无机氮形态与同位素特征,并利用δ~(15)N识别了太湖西部上游区氮污染来源及转化途径的生物化学作用机制.结果表明:NO_3~--N与NH_4~+-N为研究区域入湖河流无机氮的主要形态,而NO_3~--N为西部湖区水体无机氮的主要形态;δ~(15)N-NO_3~-的数值范围揭示了西部入湖河流在枯水季NO_3~--N主要来源于农用化肥,有少量矿化土壤有机氮,而丰水季则以生活污水为主,有少量矿化土壤有机氮及农用化肥;δ~(15)N-NH_4~+的数值范围说明了生活污水是河流水体NH_4~+-N的主要来源;通过水体及沉积物样品NO_3~--N、NH_4~+-N、δ~(15)N-NO_3~-、δ~(15)N-NH_4~+的协同分析可知,湖区氮的赋存形态主要受湖区水体硝化作用及沉积物内反硝化作用的影响.  相似文献   

8.
白洋淀府河中氮的来源与迁移转化研究   总被引:15,自引:9,他引:6  
王珺  高高  裴元生  杨志峰 《环境科学》2010,31(12):2905-2910
采用δ15N示踪法对白洋淀府河中含氮污染物来源以及氮的沿程迁移转化进行了研究.结果表明,府河氨氮(NH 4+-N)和硝氮(NO 3--N)中δ15N分别为1.35‰~8.01‰,-6.69‰~8.36‰.府河氮污染物的主要来源为保定市生产生活废水,农业面源对河流氮污染的贡献不大.枯水期,府河水体与沉积物之间的物质和能量交换频繁,硝化作用和反硝化作用受水体与沉积物二者的共同影响.丰水期,河流NH 4+-N主要通过植物吸收去除;NO 3--N减少约86.3%,其中反硝化作用贡献为44.6%,水生植物吸收占到55.4%.因此,通过恢复府河水生植物,可以强化植物对河流NH 4+-N和NO 3--N的吸收,从而缓解白洋淀富营养化状况.  相似文献   

9.
漂浮水生维管束植物具有发达的通气组织,然而关于其传输水体中产生温室气体N_2O方面的研究还很匮乏.本研究以漂浮水生植物凤眼莲为代表,利用稳定氮同位素示踪技术,设计能够分隔根室和叶室的水生植物生长系统,通过微宇宙实验定量追踪N-15标记的氮素在凤眼莲根系介导下的转化途径、N_2O产生规律及N_2O通过通气组织向空气的传输过程.研究结果表明,加入水体的~(15)NO_3~-有少部分通过异化还原成为铵(DNRA)过程转化为NH_4~+-~(15)N,主要通过反硝化反应生成N_2O;加入的~(15)NH_4~+主要发生了耦合硝化-反硝化反应.种植凤眼莲均使叶室中N_2O-~(15)N原子百分超和~(15)N_2O浓度明显高于无植物的对照,一方面说明凤眼莲根系能够促进反硝化、硝化-反硝化反应过程,同时也说明水体中的~(15)N_2O有相当一部分通过植株体传输到空气中.凤眼莲通气组织主要通过分子扩散从高浓度空间向低浓度空间输送~(15)N_2O.在标记NO_3~--~(15)N的水体中,凤眼莲在前期促进了~(15)N_2O向顶空排放,但并未在整个生长期持续促进N_2O释放.在标记NH_4~+-~(15)N的水体中,植株体富集是NH_4~+-~(15)N的一个主要归趋途径,但同时也有部分NH_4~+-~(15)N转化为N_2O通过植株通气组织持续、缓慢地释放到顶空当中.研究结果阐明了漂浮植物对水体氮转化过程及N_2O输移途径的调节作用,可为全面理解水体生态系统氮循环过程提供理论基础.  相似文献   

10.
沉积物-水界面氮的源解析和硝化反硝化   总被引:8,自引:6,他引:2  
掌握沉积物-水界面氮的循环过程,对有效控制地表水氮污染具有关键的作用.通过采集西湖不同季节的柱状芯样,利用氮、氧同位素技术及稳定同位素源解析模型(stable isotope analysis in R,SIAR)并结合乙炔抑制法研究沉积物-水界面氮的来源及迁移转化.结果表明,硝酸盐(NO_3~-)和氨氮(NH_4~+)在沉积物-水界面均存在浓度梯度,NO_3~-自底层水向间隙水扩散,是为沉积物累积;NH_4~+自间隙水向底层水扩散,是为沉积物释放.西湖底层水硝化作用明显,硝酸盐来源包括生活污水(粪肥)、土壤氮、化肥和降雨,生活污水(粪肥)是主要来源,其在夏季贡献率高达60.8%.间隙水中特别高的δ15N值反映西湖沉积物-水界面存在强烈的反硝化作用.西湖沉积物-水界面硝化速率和反硝化速率的平均值分别为2.85 mmol·(m~2·d)~(-1)和23.51μmol·(m~2·d)~(-1),沉积物-水界面在水体氮素去除过程中作用显著.硝化速率和反硝化速率时空变化显著.温度和溶解氧是影响西湖沉积物-水界面氮迁移转化的主要因素.  相似文献   

11.
反硝化作用是湖泊水体最主要的脱氮过程,对减轻湖泊的氮素污染和富营养化控制具有重要意义。蓝藻水华暴发和衰亡可能会通过改变水体氮素循环途径及微环境来促使反硝化作用直接在水柱中发生,加速氮的去除。为了验证这一假设,取太湖湖水进行蓝藻的生长与降解对反硝化影响的模拟实验,不同初始生物量的蓝藻和连续添加NO3--N、PO43--P营养盐10d,测定蓝藻水华期水体各形态氮及其浓度变化,同时利用15N同位素添加培养结合膜进样质谱仪(MIMS)实时定量测定反硝化速率。结果表明,蓝藻在生长期吸收氮素转变为颗粒氮,在衰亡期藻细胞的降解为反硝化作用提供充足的底物,其中以NH4+为主要氮源,是大幅度促进水体反硝化过程的关键,反硝化速率(以N2计,下同)最高达到(1614.52±301.57)μmol·(m2·h)-1,比同时期最低蓝藻浓度组反硝化速率[(534.45±242.18)μmol·(m2·h)-1]高了3倍;添加初始蓝藻浓度倍数最高组的TN去除率达最高(40.02%),是未添加蓝藻组TN去除率(17.72%)的2.26倍。说明系统中存在氮元素转移和去除机制,并且蓝藻浓度刺激了反硝化活跃的强度。蓝藻衰亡时反硝化速率的快慢受NH4+浓度的影响显著,表明附着在藻团的微生物的耦合硝化-反硝化作用是氮盐去除的主要途径。本研究结果表明,水华吸收氮盐并且可加速氮素去除效率,这可能是太湖夏季氮素较低的主要原因。  相似文献   

12.
《环境科学与技术》2021,44(8):131-138
为了探究除氨生物滴滤塔中氮转化途径及其生物相特征,以氨气(NH_3)作为研究对象,在填料塔空塔停留时间为5.7 s,循环液喷淋强度为637 L/(h?m~2)条件下,进行了平均进气浓度分别为5.21、11.06和17.32 mg/m~3(以N为计)的3组试验,NH_3平均去除率分别为93.86%、95.12%、96.13%,且出气浓度均低于1 mg/m~3(以N为计)。在3组试验过程中,对进气、出气以及循环液中各种化学形态N元素分别进行了检测,通过N质量平衡分析了生物滴滤塔中氮转化途径,结果表明进气中的NH_3-N经液相吸收后,很大一部分被微生物利用后直接氧化成NO_3~--N、NO_2~--N,少部分N元素被反硝化脱除,还有一部分N元素被转化为N_(org)。应用Illumina平台高通量测序技术对生物滴滤塔内生物膜中的生物种属进行了分析,结果显示优势菌属为芽孢杆菌属Bacillus、产黄杆菌属Rhodanobacter、慢生根瘤菌属Bradyrhizobium、肠球菌属Enterococcus、类芽孢杆菌属Paenibacillus等,生物滴滤塔内微生物群落主要利用硝化菌群将NH_4~+-N氧化成硝氮和亚硝氮,并利用反硝化菌群将硝氮和亚硝氮反硝化成N_2。  相似文献   

13.
人工湿地控制暴雨径流污染的实验研究   总被引:28,自引:1,他引:28  
研究了不同填料,不同植物的人工湿地对暴雨径流中污染物的去除,实验结果表明:(1)以沸石为填料的人工湿地对暴雨径流中的COD,N具有高而稳定的去除率。(2)沸石能高效去除氨氮,并可生物再生,长期保持吸附氨氮能力。(3)N的去除是通过硝化,反硝化作用。植物吸收,微生物的同化作用去除。(4)草蒲和芦苇对N的去除效果没有明显区别。(5)对COD的去除,芦苇好于菖蒲,但菖蒲的除P能力大于芦苇。  相似文献   

14.
为探寻反硝化与萘代谢过程的偶联机制,从潜在PAHs(polycyclic aromatic hydrocarbons)污染的土壤中富集获取了萘的反硝化降解菌群.通过Illumina Mi Seq测序对其细菌群落结构进行了解析,并研究其萘代谢过程中反硝化电子受体[硝酸根(NO_3~-)、亚硝酸根(NO_2~-)]浓度、气态还原产物[氧化亚氮(N_2O)、氮气(N_2)]产生速率及反硝化微生物相关的nar G(periplasmic nitrate reductase gene)和nir S(cd1-nitrite reductase gene)基因丰度的动态变化.Illumina Mi Seq测序结果表明,变形菌门中的Pseudomonas是该富集菌群中丰度最高的菌属.富集获取的萘反硝化降解菌群9 d内对萘的降解率为49.11%,培养初期(1~3 d)及末期(7~9 d)萘的降解速率无差异,但它们均显著高于培养中期(3~7 d)的降解速率(P0.05).培养期间,培养液中NO_3~-浓度呈逐渐下降趋势,而NO_2~-积累出现在第1~3 d.培养的3~9 d,NO_2~-浓度迅速下降,但在培养中期(3~7 d)未检测到气体产生,只在培养末期(7~9 d)检测到明显的N2O[3.39μg·(L·h)-1]和N2[8.97μg·(L·h)-1]的产生.在培养期间nar G及nir S基因的丰度均随培养时间而上升,表明该富集菌群中反硝化微生物丰度的逐渐增加.综上,NO_3~-还原过程及随后的NO_2~-还原过程等产气过程均可能与萘的厌氧降解过程相偶联,该结果可为进一步深入探讨萘的反硝化代谢机制打下基础.  相似文献   

15.
研究了粒状滤床生化反应柱对NO_3~-去除特性。结果表明,当容积负荷范围为每日1.92~3.84kg(NO_3~--N)/m~3时,反硝化率为95.7%~100%,相应CH_3OH消耗量为每日4.9~9.8kg/m~3;COD_(Cr)去除负荷为每日7.3~14.6kg/m~3。进水NO_3~-浓度越低,达到完全反硝化所需的C/N值越高;投加的C/N值越高,实际消耗的C/N值越高;当投加的C/N值低时,其消耗的C/N值也低,越接近于理论值(CH_3OH:NO_3~--N=2.47),相应的出水残留有机物也低(COD_(Cr)<10mL);投加的C/N值低于一定值时,NO_3~-将不能全部转化成氮气,此时水中的NO_2~-浓度<1mg/L;反硝化过程导致pH提高,当NO_3~-浓度<40mg/L时,pH<8.5。  相似文献   

16.
以华南稻田土壤为研究对象通过构建微宇宙体系,研究了淹水稻田自养硝酸盐还原耦合As(Ⅲ)氧化过程及其微生物群落结构组成.结果表明,NO_3~-的添加促进了稻田土壤中As(Ⅲ)的氧化,在未添加NO_3~-的处理(Soil+As(Ⅲ))以及灭菌处理(Sterilizedsoil+As(Ⅲ)+NO_3~-)中As(Ⅲ)未发生明显的氧化;在Soil+As(Ⅲ)+NO_3~-处理中,NO_3~-有少量被还原,而在Soil+NO_3~-处理中,NO_3~-没有被还原.通过16S rRNA高通量分析在NO_3~-还原耦合As(Ⅲ)氧化体系中微生物群落结构特征,在Soil+As(Ⅲ)+NO_3~-处理中shannon指数相对较低为8.19,土壤微生物群落多样性降低,其中在门水平上主要优势菌群为变形菌门Proteobacteria(33%)、绿弯菌门Chloroflexi(11%)、浮霉菌门Planctomycetes(12%);在属水平上主要的优势菌属为Gemmatimonas(7.4%)以及少量的Singulisphaera、Thermomonas、Bacillus.NO_3~-的添加能够促进稻田土壤中自养As(Ⅲ)氧化,并且影响着稻田土壤中微生物群落组成.  相似文献   

17.
循环流廊道湿地中氮归趋过程模拟研究   总被引:1,自引:1,他引:0  
针对新型高效脱氮循环流廊道(CFC)湿地,构建了涵盖6种氮形态、3类介质、10种代谢途径的N循环模型,探索了湿地内N迁移转化模式.结果表明,沸石吸附(53.3%)、植物吸收NH+4-N(27.6%)、NO-3-N反硝化(10.2%)、植物吸收NO-3-N(2.9%)和NO-2-N短程反硝化(1.5%)对TN去除贡献依次降低.NH+4-N去除机制存在季节差异,其中1月NH+4-N主要通过沸石吸附去除(84.5%);4~6月通过植物吸收去除(76.4%~85.3%);7月通过沸石吸附(36.1%)、亚硝化(45.8%)及植物吸收(21.4%)共同去除.此外,定期收获植物、按期再生沸石及种植水生植物可分别提升TN去除率1.7%~7.7%、43.1%~72.2%和19.8%~36.2%.综之,CFC湿地去除途径多样性保障了TN的长期高效去除.  相似文献   

18.
太子河流域中游地区河流硝酸盐来源及迁移转化过程   总被引:7,自引:2,他引:5  
李艳利  孙伟  杨梓睿 《环境科学》2017,38(12):5039-5046
选取太子河中游地区为研究对象,联合硝酸盐(NO_3~-)、氯离子(Cl~-)、硝酸盐氮、氧同位素(δ~(15)N和δ~(18)O)和水的氧同位素(δ~(18)O)识别不同季节2016年5月和8月(对应枯水期和丰水期)地表水硝酸盐来源及迁移转化过程.结果表明通过ManWhitney U检验,枯水期ρ(Cl~-)、ρ(NO_3~-)、ρ(NH_4~+-N)和δ~(18)O-NO_3~-显著高于丰水期,δ~(15)N-NO_3~-无显著时间差异.根据NO_3~-/Cl~-,δ~(15)N-NO_3~-和δ~(18)O-NO_3~-的范围,发现不同采样期,硝酸盐主要来自于多种源的混合.丰水期,细河、蓝河和下达河硝酸盐来源是化学肥料、土壤氮和生活污水及畜禽粪便排放废水.二道河主要是土壤氮和化学肥料.枯水期,下达河硝酸盐主要来自于化学肥料和土壤氮,细河、蓝河和二道河硝酸盐来源主要是土壤氮和生活污水及畜禽粪便的排放.丰水期,ρ(NO_3~-)与ρ(NH_4~+)呈负相关关系,与δ~(15)N-NO_3~-呈正相关关系,说明研究区域发生了氨氮的挥发和硝化过程.二道河和蓝河随着ρ(NO_3~-)和ρ(Cl~-)降低,ρ(NH_4~+)和δ~(15)N-NO_3~-增加,说明有明显的反硝化过程发生.不同采样期NO_3~-和Cl~-呈显著正相关关系,表明各采样河流均发生了混合过程.研究结论为丘陵地区硝酸盐来源的季节差异分析提供参考.  相似文献   

19.
对2016年4,6,和8月合肥市塘西河人工湿地水体中的溶解态硝酸盐进行稳定氮同位素分析。通过不同的季节人工湿地内硝酸盐的稳定氮同位素值(δ~(15)N-NO_3~-)的变化情况来研究水体中氮的迁移、转变等生物地球化学过程,从而揭示其环境行为,同时对该人工湿地氮的循环机制进行探究。研究发现:该人工湿地的δ~(15)N-NO_3~-值分布在13.9‰~22.7‰,表明其硝酸盐氮的主要来源是人畜排泄物或城市生活污水。4,6,8月水体中的δ~(15)N-NO_3~-值都受硝化、矿化、植物同化作用的影响;6月水体中的δ~(15)N-NO_3~-值还受藻类同化吸收作用的影响;8月水体中的δ~(15)N-NO_3~-值还受雨水混合、藻类同化吸收与反硝化作用的影响。  相似文献   

20.
在实验室环境下利用生物滞留土柱模拟雨水径流污染物去除过程,通过向不同配比的沙壤土中添加不同含量的发酵木屑(5%、10%),并控制添加位置(上层、下层以及混合添加)的不同,分析各污染物的去除效果。结果表明,外加发酵木屑有利于COD、NO_3--N和TN的去除,混合添加更有利于去除有机物和脱氮,且5%添加量较10%有着更好的去除效率。当添加量为10%时,淋失风险更大。12 h内碳源组溶解氧含量较对照组下降更为迅速导致硝化作用降低是碳源组NH_4--N和TN的去除,混合添加更有利于去除有机物和脱氮,且5%添加量较10%有着更好的去除效率。当添加量为10%时,淋失风险更大。12 h内碳源组溶解氧含量较对照组下降更为迅速导致硝化作用降低是碳源组NH_4+-N平均去除率低于对照组的原因。试验后期TP淋失现象严重是导致碳源组去除率降低的原因。因此,应控制发酵木屑添加位置为混合添加,且添加量为5%以促进生物滞留系统去除污染物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号