首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The use of recycled waste glasses in Portland cement and concrete has attracted a lot of interest worldwide due to the increased disposal costs and environmental concerns. Being amorphous and containing relatively large quantities of silicon and calcium, glass is, in theory, pozzolanic or even cementitious in nature when it is finely ground. Thus, it can be used as a cement replacement in Portland cement concrete. The use of crushed glasses as aggregates for Portland cement concrete does have some negative effect on properties of the concrete; however, practicle applicability can still be produced even using 100% crushed glass as aggregates. The main concerns for the use of crushed glasses as aggregates for Portland cement concrete is the expansion and cracking caused by the glass aggregates. This paper summarizes the progresses and points out the directions for the proper uses of waste glasses in Portland cement and concrete.  相似文献   

2.
Wellbore integrity is one of the key performance criteria in the geological storage of CO2. It is significant in any proposed storage site but may be critical to the suitability of depleted oil and gas reservoirs that may have 10’s to 1000’s of abandoned wells. Much previous work has focused on Portland cement which is the primary material used to seal wellbore systems. This work has emphasized the potential dissolution of Portland cement. However, an increasing number of field studies (e.g., Carey et al., 2007), experimental studies (e.g., Kutchko et al., 2006) and theoretical considerations indicate that the most significant leakage mechanism is likely to be flow of CO2 along the casing–cement microannulus, cement–cement fractures, or the cement–caprock interface.In this study, we investigate the casing–cement microannulus through core-flood experiments. The experiments were conducted on a synthetic wellbore system consisting of a 5-cm diameter sample of cement that was cured with an embedded rectangular length of steel casing that had grooves to accommodate fluid flow. The experiments were conducted at 40 ° C and 14 MPa pore pressure for 394 h. During the experiment, 6.2 l of a 50:50 mixture of supercritical CO2 and 30,000 ppm NaCl-rich brine flowed through 10-cm of limestone before flowing through the 6-cm length cement–casing wellbore system. Approximately 59,000 pore volumes of fluid moved through the casing–cement grooves. Scanning electron microscopy revealed that the CO2–brine mixture impacted both the casing and the cement. The Portland cement was carbonated to depths of 50–250 μm by a diffusion-dominated process. There was very little evidence for mass loss or erosion of the Portland cement. By contrast, the steel casing reacted to form abundant precipitates of mixed calcium and iron carbonate that lined the channels and in one case almost completely filled a channel. The depth of steel corroded was estimated at 25– 30μm and was similar in value to results obtained with a simplified corrosion model.The experimental results were applied to field observations of carbonated wellbore cement by Carey et al. (2007) and Crow et al. (2009) to show that carbonation of the field samples was not accompanied by significant CO2–brine flow at the casing–cement interface. The sensitivity of standard-grade steel casing to corrosion suggests that relatively straight-forward wireline logging of external casing corrosion could be used as a useful indicator of flow behind casing. These experiments also reinforce other studies that indicate rates of Portland cement deterioration are slow, even in the high-flux CO2–brine experiments reported here.  相似文献   

3.
In this study the possibility of both chemical and combined chemical + thermal activation of municipal solid waste incinerator bottom ash was investigated. A number of chemical activators including Na2SiO3·9H2O, NaOH, Na2SO4 and CaCl2·2H2O were individually added at varying concentrations to bottom ash/Portland cement mixtures having different bottom ash contents. The effect of the selected compounds was evaluated in terms of macroscopic properties including mechanical strength and composition of cementitious materials/water slurries. The results showed that Na-based activators were not capable of improving the characteristics of the cementitious products if compared to Portland cement under both normal and accelerated curing. Conversely, the use of calcium chloride at 40 °C-curing did promote the pozzolanic properties of bottom ash, leading to UCS values of 45.5 and 60.0 MPa after 10 and 20 days, respectively, as opposed to a value of 43.6 MPa obtained after 28 days for Portland cement under normal curing conditions.  相似文献   

4.
This paper discusses the options for the development of Tanzania's cement industry to meet the country's growing cement needs. It evaluates possible options and supports the use of dispersed small-scale vertical kiln plants to increase the capacity for Portland cement production. It also encourages the use of alternative cementitious materials in the many applications where this is possible.  相似文献   

5.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

6.
Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, indicating that As is well immobilized in the two types of CPB.  相似文献   

7.
刘宝剑  蓝俊康 《四川环境》2007,26(4):93-96,101
土聚物是一种新型的无机聚合物,它具有类沸石似的网络结构,其分子链由Si、0、Al等以共价键连接而成。由于它的渗滤性低,对重金属元素不仅予以物理束缚也能进行化学束缚,因此利用它来固化重金属污染物的效果很好。同时,土聚物的强度又比由硅酸盐水泥制成的混凝土要高许多,因此其固化物还可被应用于道路或其他建设领域。但遗憾的是目前利用含重金属污泥制成土聚水泥的研究还基本属于空白阶段,建议加强这方面的研究。  相似文献   

8.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

9.
In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.  相似文献   

10.
Sustainable development and eco-efficiency are urgent and imperative demands for the well-being of our planet, continued growth of a society, and human development. Traditional Portland cement production seems unsustainable due to consumption of huge natural resources and energy and significant CO2 emissions. The volume of industrial wastes is increasing significantly, leading to a number of economical and ecological problems. Although industrial wastes can be incorporated in cementitious materials by various traditional methods, the substitution ratio of industrial wastes in cementitious materials is relatively low to avoid unacceptable performance loss. Novel methods, such as improving hydraulic activities of metallurgical slags by adding composition adjusting material at high temperature, improving surface cementitious properties of fly ashes by dehydration and rehydration treatment, and arranging cement clinker and industrial wastes in the particle size distribution of blended cements according to their hydraulic activities, are reviewed. These methods provide more effective approach to prepare high performance blended cements with larger amount of industrial wastes, leading to a very significant role in CO2 emissions reducing, resources and energy conservation of the cement industry.  相似文献   

11.
Environmental impact and management of phosphogypsum   总被引:2,自引:0,他引:2  
The production of phosphoric acid from natural phosphate rock by the wet process gives rise to an industrial by-product called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid production, and worldwide PG generation is estimated to be around 100–280 Mt per year. This by-product is mostly disposed of without any treatment, usually by dumping in large stockpiles. These are generally located in coastal areas close to phosphoric acid plants, where they occupy large land areas and cause serious environmental damage. PG is mainly composed of gypsum but also contains a high level of impurities such as phosphates, fluorides and sulphates, naturally occurring radionuclides, heavy metals, and other trace elements. All of this adds up to a negative environmental impact and many restrictions on PG applications. Up to 15% of world PG production is used to make building materials, as a soil amendment and as a set controller in the manufacture of Portland cement; uses that have been banned in most countries. The USEPA has classified PG as a “Technologically Enhanced Naturally Occurring Radioactive Material” (TENORM).  相似文献   

12.
Electric arc furnace dust from steel production is generated in considerable amounts worldwide and needs to be treated as hazardous waste. The aim of this study was to investigate the properties of electric arc furnace dust solidified/stabilized by using Portland cement. Mortar and paste samples were prepared with varying waste-to-binder ratios between 0% and 90%. A comprehensive experimental program was designed including XRF characterization, setting time, unconfined compressive strength, and toxicity characteristics leaching procedure (TCLP), synthetic precipitation leaching procedure (SPLP), and acid neutralization capacity (ANC) tests. The results were evaluated in order to determine if the solidified /stabilized product can be disposed of at a landfill site with domestic waste or at a segregated landfill. The effect of using sand on S/S performance was also investigated. The results indicated that the solidification /stabilization process using PC helps the heavy metals to be bound in the cement matrix, but the TCLP leaching results exceeded the EPA landfilling limits. The SPLP leaching results conformed to the limits implying that the waste or S/S products can be disposed of at a segregated landfill; however the low ANC of the S/S products reveals that there may be leaching in the long-term. The sand used in the mortar samples adversely affected the S/S performance, causing higher heavy metal leaching levels, and lower pH levels in the leachate after the TCLP extraction than those measured in the leachate of the paste samples.  相似文献   

13.
Life cycle assessment, LCA, has become a key methodology to evaluate the environmental performance of products, services and processes and it is considered a powerful tool for decision makers. Waste treatment options are frequently evaluated using LCA methodologies in order to determine the option with the lowest environmental impact. Due to the approximate nature of LCA, where results are highly influenced by the assumptions made in the definition of the system, this methodology has certain non-negligible limitations. Because of that, the use of LCA to assess waste co-incineration in cement kilns is reviewed in this paper, with a special attention to those key inventory results highly dependent on the initial assumptions made. Therefore, the main focus of this paper is the life cycle inventory, LCI, of carbon emissions, primary energy and air emissions. When the focus is made on cement production, a tonne of cement is usually the functional unit. In this case, waste co-incineration has a non-significant role on CO2 emissions from the cement kiln and an important energy efficiency loss can be deduced from the industry performance data, which is rarely taken into account by LCA practitioners. If cement kilns are considered as another waste treatment option, the functional unit is usually 1 t of waste to be treated. In this case, it has been observed that contradictory results may arise depending on the initial assumptions, generating high uncertainty in the results. Air emissions, as heavy metals, are quite relevant when assessing waste co-incineration, as the amount of pollutants in the input are increased. Constant transfer factors are mainly used for heavy metals, but it may not be the correct approach for mercury emissions.  相似文献   

14.
In the Portland, Oregon, metropolitan region, an urban growth boundary (UGB) was established in 1979 to protect farm and forest lands from urban encroachment. Most of the literature on the impact of Oregon's land-use legislation has been on the urban side of the issue--primarily the relative success Portland has had in containing urban sprawl. The landscape component of this rural transformation is typically considered only as a passive backdrop to urban expansion. Portland provides an excellent site to examine the relationship city-dwellers have to nearby agricultural areas. Rapid urban growth in the 1990s pushed suburban development to the edge of the UGB creating stark contrasts between urban and rural land uses in parts of the metropolitan area. This study examines the impact of the UGB on rural landscape change in Portland. We combine findings from land-use analysis and surveys of urban and rural residents to suggest ways to merge the amenity values of landscape with planning policy regarding the UGB.  相似文献   

15.
An investigation was carried out to establish the physical, mechanical and durability characteristics of an unprocessed pulverised fuel ash (PFA) from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. This was aimed at establishing the suitability of the ash in the construction of the Church Village Bypass (embankment and pavement) and also in concrete to be used in the construction of the proposed highway.Concrete made using binder blends using various levels of PFA as replacement to Portland cement (PC) were subjected to compressive strength tests to establish performance. The concrete was also subjected to sodium sulphate attack by soaking concrete specimens in sulphate solution to establish performance in a sulphatic environment. Strength development up to 365 days for the concrete made with PC–PFA blends as binders (PC–PFA concrete), and 180 days for the PC–PFA paste, is reported.The binary PC–PFA concrete did not show good early strength development, but tended to improve at longer curing periods. The low early strength observed means that PC–PFA concrete can be used for low to medium strength applications for example blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.  相似文献   

16.
The effects of nano-SiO2 on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO2 was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash–cement mortar increased as more nano-SiO2 was added. Additionally, with 2% nano-SiO2 added and a cure length of 7 days, the compressive strength of the ash–cement mortar with 1 μm ash particle size was about 1.5 times better that of 75 μm particle size. Further, nano-SiO2 functioned to fill pores for ash–cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO2 better influenced the ash–cement mortar with larger ash particle sizes.  相似文献   

17.

In the Portland, Oregon, metropolitan region, an urban growth boundary (UGB) was established in 1979 to protect farm and forest lands from urban encroachment. Most of the literature on the impact of Oregon's land-use legislation has been on the urban side of the issue—primarily the relative success Portland has had in containing urban sprawl. The landscape component of this rural transformation is typically considered only as a passive backdrop to urban expansion. Portland provides an excellent site to examine the relationship city-dwellers have to nearby agricultural areas. Rapid urban growth in the 1990s pushed suburban development to the edge of the UGB creating stark contrasts between urban and rural land uses in parts of the metropolitan area. This study examines the impact of the UGB on rural landscape change in Portland. We combine findings from land-use analysis and surveys of urban and rural residents to suggest ways to merge the amenity values of landscape with planning policy regarding the UGB.  相似文献   

18.
A debate is still open on issues of waste to energy methodologies aiming to answer to questions of particular relevance, such as whether the concept of SRF/RDF production can be applied directly to MSW through the Mechanical–Biological Treatment (MBT) process, when selective collection acts as a virtual pre-treatment of the same, or if the use of SRF/RDF as alternative fuel in cement kilns is the most sustainable solution. In this study, two scenarios were analyzed and compared: (a) the use of SRF in a new dedicated thermal plant for electricity production and (b) the use of SRF as an alternative fuel in an existing cement plant. The comparative assessment was based on principles of Sustainable Waste Management embracing technical and cost issues, environmental protection, industrial ecology and symbiosis. The application of SWOT analysis showed that the use of SRF in cement kilns is more sustainable compared to its use in a new dedicated plant for electricity production.  相似文献   

19.
At present, many rural enterprises in China's mountainous areas are developing rapidly, and due to poor planning and improper management, in an uncontrolled manner. These small enterprises are making atmospheric pollution far more serious and more difficult to control than before. Thus, as is the case with most developing countries, China is facing the challenge of managing the increased environmental pollution that is accompanying its economic development. This paper examines the case of cement dust pollution in the town of Wenquan in Sichuan province in order to determine how to adjust the relationship between development of rural enterprises and atmospheric environmental pollution in mountainous areas. Using the single objective linear programming method, and based on the principle of overall optimization, an optimal control plan for different pollution sources was worked out and an economic assessment on reclamation of cement dust was completed. According to our analysis, after implementation of this plan for four years, two months, the concentrations of suspended particles in Wenquan will achieve the requirement of the national third-order ambient air quality standard; the current serious dust pollution will be completely controlled; and the reclamation of cement dust will totally compensate for the cost of dust control and will result in 92,000 yuan of pure profit per year. At that time, the economy and environment will be in harmony.  相似文献   

20.
李全伟  苑国琪  张东  李帆 《四川环境》2006,25(6):23-25,31
聚合物水泥用于放射性废离子交换树脂水泥固化工艺,利用其防水性能抑制废树脂的溶胀,降低水泥固化体中放射性核素^137Cs、^90Sr浸出率,提高了废树脂包容率和处置的安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号