首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Recently, it has been reported that biological phosphorus removal (BPR) can be induced by an aerobic/extended-idle (AEI) regime. This study further investigated the effect of initial pH ranging from 6.6 to 8.2 on BPR in the AEI process, and compared the BPR performance between the AEI and the anaerobic/oxic (A/O) regimes under their optimal initial pH value. Experimental results firstly showed that phosphorus removal linearly increased with initial pH increasing from 6.6 to 7.8, but slightly decreased when initial pH increased from 7.8 to 8.2. The optimal initial pH should be controlled at 7.8, and the phosphorus removal at initial pH 7.8 was approximately 1.7-time than that at initial pH 6.6. The mechanism studies showed that the biomass cultured at initial pH 7.8 contained more polyphosphate accumulating organisms (PAOs), lower glycogen accumulating organisms (GAOs), and had higher activities of exopolyphosphatase and polyphosphate kinase than that cultured at initial pH 6.6. Cyclic studies revealed that initial pH control affected the transformations of intracellular polyhydroxyalkanoates and glycogen, which might thereby influence microbial competition between PAOs and GAOs. Then, BPR performance between the AEI and the A/O regimes by adjusting initial pH at 7.8 was also compared. The results showed the AEI regime could drive a better BPR than the generally accepted A/O regime (98% vs 88%). Finally, controlling initial pH at 7.8 to promote BPR in the AEI process was confirmed for a municipal wastewater.  相似文献   

2.
初始pH值对磷酸盐还原除磷的影响研究   总被引:2,自引:0,他引:2  
以超高盐(盐度7%,以NaCI计)高磷榨菜废水为研究对象,考察了初始pH值对磷酸盐还原进程的影响。实验结果表明,初始pH值对磷酸盐还原除磷效能影响显著。初始pH为8时,磷酸盐还原除磷率达到最高,平均值为65.45%。同时,初始pH值还会影响污泥中活性磷的形成以及基体对磷化氢的吸附。此外,偏碱性有利于磷形态转化,且BD-P(主要是一些可溶性的、还原性强的、带有Fe-P化合物的集合)含量的高低调控着生物膜内间隙水中溶解态可反应性磷(DRP)和可还原水溶态磷(RSP)含量,最终决定着磷酸盐还原进程。随着初始pH值的升高,污泥对磷化氢的吸附能力降低导致污泥中结合态磷化氢(MBP)含量不断减少。  相似文献   

3.
COD对强化生物除磷系统的影响及OUR的变化规律   总被引:1,自引:1,他引:1  
以实际生活污水为研究对象,在SBR系统中采用厌氧/好氧运行方式,考察强化生物除磷(EBPR)系统中好氧阶段COD浓度对聚磷菌除磷性能的影响以及不同好氧阶段COD浓度下的OUR变化规律.实验分4个阶段进行,分别为不投加外碳源、厌氧结束时投加不同体积的乙酸钠作为外碳源,使COD分别提高50、100和300mg/L.4种工况...  相似文献   

4.
污水生物除磷研究进展   总被引:8,自引:0,他引:8  
水体富营养化是世界性难题,其中磷通常是主要限制因子.生物除磷工艺简单,污泥产量少,可节约能源,运行费用也较低,便于操作和磷的回收.在介绍水体中磷的来源、污染特点及其造成危害的基础上,着重综述了国内外生物除磷的研究进展,并对生物除磷存在的问题和发展趋势提出了一些看法.  相似文献   

5.
《Chemosphere》2008,70(11):1713-1721
In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH > 6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH > 7.51, which indicated that PAO would take predominance over GAO at pH > 7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.  相似文献   

6.
Zhang C  Chen Y  Liu Y 《Chemosphere》2007,69(11):1713-1721
In most studies on phosphorus- and glycogen-accumulating organisms (PAO and GAO), pH was controlled constantly throughout the entire anaerobic and aerobic periods, and acetic acid was used as the carbon source. In this paper, the effect of long-term initial pH values on PAO and GAO was investigated with mixed propionic and acetic acids as carbon sources. It was observed that with pH increasing from 6.4 to 8.0, the anaerobic propionic acid uptake rate by PAO linearly increased but that by GAO proportionally decreased. At pH 6.70 and pH 7.51, PAO and GAO exhibited the same acetic and propionic acid uptake rates, respectively. The acetic acid uptake rate by PAO was greater than that by GAO at pH > 6.70, and the propionic acid uptake rate by PAO was higher than that by GAO at pH > 7.51, which indicated that PAO would take predominance over GAO at pH > 7.51. Poly-3-hydroxybutyrate, poly-3-hydroxyvalerate and poly-3-hydroxy-2-methylvalerate shared 7%, 62% and 31%, respectively in the PAO system, and 11%, 44% and 45% respectively in the GAO system, and these fractions were observed independent of pH either in the PAO or in the GAO system. In the PAO system, with the increase of pH, the phosphorus removal efficiency was improved greatly, and a phosphorus removal efficiency of 100% was achieved at 8.0. Further investigation showed that the higher phosphorus removal efficiency at higher pH was mainly caused by a biological effect instead of chemical one.  相似文献   

7.
强化生物除磷的机理模型研究进展   总被引:3,自引:0,他引:3  
主要论述了以乙酸盐及葡萄糖作为基质的强化生物除磷的相关机理模型。当以乙酸盐为底物时.重点需要明确导致工艺中微生物代谢模式差异的原因及厌氧条件下还原力供给方式的问题;当以葡萄糖为底物时.主要需要解决厌氧条件下供能方式以及各种微生物之间的关系。某些抑制条件(如供氧不足)可能会促进强化生物除磷效果的实现。强化生物除磷各种机理的差异主要由所驯化的优势微生物种类及其代谢模式不同而造成的。  相似文献   

8.
Conventional wastewater treatment simulation programs use a "lumped" approach, where process rates are calculated using bulk concentrations of biomass and microbial storage products. A recently developed distributed, or agent-based, approach, where individual bacteria are modeled to account for their potentially variable hydraulic experiences, was applied to the 5-stage Bardenpho process, a type of enhanced biological phosphorus removal (EBPR) that includes internal recycle flows, which were hypothesized to affect distributed state development. Consistent with previous results, the EBPR predicted performance was worse according to the distributed approach than the lumped approach. In addition, increasing the internal recycle rate increased the anoxic reactor nitrate concentrations, tending to decrease EBPR performance. However, in the distributed approach, differences in the state distributions in internal recycle-linked reactors decreased with increasing recycle flow, tending to improve EBPR. These phenomena tend to have simultaneous and opposite effects on EBPR. The net effect will depend largely on the specific systems and the nitrate concentration in anoxic reactors.  相似文献   

9.
The phosphate fertilizer industry produces highly hazardous and acidic wastewaters. This study was undertaken to develop an integrated approach for the treatment of wastewaters from the phosphate industry. Effluent samples were collected from a local phosphate fertilizer producer and were characterized by their high fluoride and phosphate content. First, the samples were pretreated by precipitation of phosphate and fluoride ions using hydrated lime. The resulting low- fluoride and phosphorus effluent was then treated with the enhanced biological phosphorus removal (EBPR) process to monitor the simultaneous removal of carbon, nitrogen, and phosphorus. Phosphorus removal included a two-stage anaerobic/aerobic system operating under continuous flow. Pretreated wastewater was added to the activated sludge and operated for 160 days in the reactor. The operating strategy included increasing the organic loading rate (OLR) from 0.3 to 1.2 g chemical oxygen demand (COD)/L.d. The stable and high removal rates of COD, NH4(+)-N, and PO4(3-)-P were then recorded. The mean concentrations of the influent were approximately 3600 mg COD/L, 60 mg N/L, and 14 mg P/L, which corresponded to removal efficiencies of approximately 98%, 86%, and 92%, respectively.  相似文献   

10.
A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.  相似文献   

11.
In this study, the combined effects of temperature and solids retention time (SRT) on enhanced biological phosphorus removal (EBPR) performance and the mechanism of EBPR washout were investigated. Two pilot-scale University of Cape Town (South Africa) systems fed with synthetic wastewater were operated at 5 and 10 degrees C. The results showed that the phosphorus removal performance was optimum at total SRT ranges of 16 to 24 days and 12 to 17 days for 5 and 10 degrees C, respectively, and steady-state phosphorus removal was greater at the lower temperature. Higher SRT values of up to 32 days at 5 degrees C and 25 days at 10 degrees C slightly reduced EBPR performance as a result of increased extent of endogenous respiration, which consumed internally stored glycogen, leaving less reducing power for poly-hydroxy alkanoate (PHA) formation in anaerobic stages. The phosphorus-accumulating organism (PAO) washout SRTs of the systems were determined as 3.5 days at 5 degrees C and 1.8 days at 10 degrees C, considerably less than the washout SRTs of nitrifiers. Polyphosphorus, the main energy reserve of the EBPR bacterial consortium, was not completely depleted, even at washout points. The inability of EBPR biomass to use glycogen to generate reducing power for PHA formation was the major reason for washout. The results not only suggest that glycogen mechanism is the most rate-limiting step in EBPR systems, but also that it is an integral part of EBPR biochemistry, as proposed originally by Mino et al. (1987), and later others (Pereira et al., 1996, Erdal et al., 2002; Erdal, Z. K., 2002). The aerobic washout SRT values (2.1 and 1.2 days for 5 and 10 degrees C, respectively) of this study did not fit the linear line for PAO washout developed by Mamais and Jenkins (1992). Perhaps this was because the feeds used during this study were chemical-oxygen-demand-limited (acetate-based synthetic feed), whereas the feeds used for their study were phosphorus-limited (external acetate added to domestic wastewater), resulting in different ratios of PAOs and nonPAOs in the biomass.  相似文献   

12.
The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.  相似文献   

13.
废水吸附法除磷的研究进展   总被引:7,自引:0,他引:7  
本文叙述了利用吸附原理进行废水除磷的研究进展。吸附法除磷的研究主要表现在吸附材料的研究方面 ,基于应用场合的差异 ,包括廉价的天然材料、工业废渣及其改性物、传统的活性氧化铝及其改性物、其他多孔物质及人工合成的高效吸附剂等。人工合成高效吸附剂由于磷吸附容量大 ,其相关研究成为近年来的重要发展方向  相似文献   

14.
A sequencing batch reactor was used to study the possibility of harvesting polyhydroxyalkanoate (PHA) from enhanced biological phosphorus removal (EBPR) processes without compromising treatment quality. Because, in EBPR, the highest PHA concentrations are observed after exposure of the sludge to anaerobic conditions, PHA accumulation was evaluated with collection of waste activated sludge (WAS) at the end of the anaerobic stage, in addition to the traditional removal after the aerobic stage. The system achieved good phosphorus removal, regardless of the point of WAS collection. When sludge was harvested at the end of the anaerobic stage, the PHA content of the sludge ranged from 7 to 16 mg PHA/100 mg mixed liquor volatile suspended solids. Although this level of PHA production is below levels obtained with pure cultures, the demonstrated ability to harvest PHA, while simultaneously satisfying phosphorus removal in an EBPR process, is a key initial step towards of the use of wastewater treatment plants for PHA production.  相似文献   

15.
Increased anaerobic selector hydraulic retention times (HRTs) in a high-purity oxygen activated sludge process resulted in an increase in soluble orthophosphate release and biodegradable chemical oxygen demand removal, confirming that enhanced biological phosphorus removal occurs at aeration solids retention times (SRTs) below 1.7 days. Under operating conditions that included biological foam trapping and recycling, an anaerobic selector with HRTs higher than 55 minutes resulted in a decrease in filament counts and effective foam control. Effective norcardioform control is achieved through the combination of metabolic selective pressure and increased soluble organic substrate removal in the anaerobic selector and low aeration SRT.  相似文献   

16.
Enhanced biological phosphorus removal is a well-established technology for the treatment of municipal wastewater. However, increased effluent phosphorus concentrations have been reported after periods (days) of low organic loading. The purpose of this study was to evaluate different operating strategies to prevent discharge of effluent after such low-loading periods. Mechanisms leading to these operational problems have been related to the reduction of polyphosphate-accumulating organisms (PAOs) and their storage compounds (polyhydroxy alkanoates [PHA]). Increased effluent phosphorus concentrations can be the result of an imbalance between influent loading and PAOs in the system and an imbalance between phosphorus release and uptake rates. The following operating conditions were tested in their ability to prevent a reduction of PHA and of overall biomass during low organic loading conditions: (a) unchanged operation, (b) reduced aeration time, (c) reduced sludge wastage, and (d) combination of reduced aeration time and reduced sludge wastage. Experiments were performed in a laboratory-scale anaerobic-aerobic sequencing batch reactor, using acetate as the carbon source. Without operational adjustments, phosphorus-release rates decreased during low-loading periods but recovered rapidly. Phosphorus-uptake rates also decreased, and the recovery typically required several days to increase to normal levels. The combination of reduced aeration time and reduced sludge wastage allowed the maintenance of constant levels of both PHA and overall biomass. A mathematical model was used to explain the influence of the tested operating conditions on PAO and PHA concentrations. While experimental results were in general agreement with model predictions, the kinetic expression for phosphorus uptake deviated significantly for the first 24 hours after low-loading conditions. Mechanisms leading to these deviations need to be further investigated.  相似文献   

17.
沉淀-絮凝结合法处理磷化废水的研究   总被引:5,自引:1,他引:4  
采用沉淀-絮凝结合法处理高浓度的磷化废水,以生石灰、氟化钠为沉淀剂,聚炳烯酰胺为絮凝剂对高浓度磷化废水进行了水处理与研究,实验结果表明,对于磷化废水磷酸盐含量高达158 mg/L时,通过控制反应的pH值、沉淀剂及絮凝剂的投加量、沉淀时间等参数,使出水磷含量<0.5 mg/L,达到国家综合污水排放一级标准, 磷的去除率达99.5%,分别较氯化铁和硫酸铝等传统絮凝剂的磷去除率提高17.4%和15.2%;同时磷化废水中的COD和SS的去除率也能达到78.6%和83.6%, 絮凝剂及其处理成本均明显低于传统絮凝剂,具有明显的经济效益和环境效益。  相似文献   

18.
废水除磷技术的研究与发展   总被引:3,自引:0,他引:3  
目前 ,人们越来越重视污水除磷技术。本文介绍与评述了化学和生物两种除磷方式及其除磷机理和工艺 ,并着重介绍了生物除磷的现状、发展和研究动向  相似文献   

19.
This paper presents results of investigations on the influence of humic substances (humate, HS) on the biological treatment of wastewater containing heavy metals (Cr, Cu, Fe, Mn, Ni, and Zn). Respirometric studies indicated that the investigated system complied with the Haldane model for inhibitory wastes. Chemical analyses showed that, while the soluble COD removal was high (82%), only 7% of ammonia was oxidized to nitrate. An addition of HS (500 mg L−1) mitigated the inhibitory effect of the wastewater on the returned activated sludge. The system with HS complied with the Monod model for non-inhibitory wastes, and the removal of ammonia and metals was 99% and over 90%, respectively. It is suggested that an application of HS could be beneficial for treatment plants receiving wastewater streams containing heavy metals.  相似文献   

20.
为有效去除化学镀镍废水中的主要污染物质磷与镍,采用H2O2氧化、芬顿氧化、铁碳处理、次氯酸钙氧化4种方法进行同步除磷去镍效果研究。结果表明:H2O2可有效去除废水中的镍,但单独氧化除磷效果不佳,芬顿氧化可增强其对磷的去除率,在一定的反应时间下达到良好的同步除磷去镍的效果;铁碳处理可基本达到同步除磷去镍的效果,但反应时间长;次氯酸钙可快速去除水中的磷与镍,是一种理想的同步除磷去镍试剂。通过分析可知,4种方法对化学镀镍废水中的磷与镍的去除均具有一定效果,且各具优势。研究为实现化学镀镍废水中同步除磷去镍的目标提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号