首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a model for coupling the statistics of wind velocity distribution and atmospheric pollutant dispersion. The effect of wind velocity distribution is modeled as a three-dimensional finite-impulse response (3D-FIR) filter. A phase space representation of the 3D-FIR filter window is discussed. The resulting pollutant dispersion is the multiplication in the phase space of the 3-D Fourier transform of the pollutant concentration and the volume described by the filter window coefficients. The shape of the filter window in the phase space enables representing such effects as vortex shedding thermal currents, etc. The impact of spatial distribution of the sensors on the resulting pollutant spatial distribution and the 3-D FIR filter model employed also discuss. The case of a neutrally buoyant plume emitted from an elevated point source in a turbulent boundary layer considers. The results show that wind turbulence is an important factor in the pollutant dispersion and introduces expected random fluctuations in pollutant distribution and leads to spreading the distribution due to wind mixing.  相似文献   

2.
Changes in urban surface areas and population growth have significantly affected the weather and environment. Emissions of nitrogen oxides are increasing in the Pearl River Delta region. Nitrogen compounds emitted by factories and motor vehicles are the major sources of nitric pollution. To study the impacts of urbanization and the relationship between pollutant diffusion and the atmospheric environment, the nonhydrostatic mesoscale forecast model MM5 (v3.73), which was developed by Penn State University and the National Center of Atmospheric Research, and a mass continuity equation for air pollutants, were used in this study. Two experiments were designed. One experiment (BE) applied horizontal grid resolutions of 27, 9, 3, and 1?km in four nested domains. The other experiment adopted new land-use data (in domain 4) directly retrieved from Landsat Thematic Mapper imagery to replace the 1980s data of the United States Geological Survey in BE. A 48-h simulation (from 0000?UTC on 21 October to 0000?UTC on 23 October 2008) was conducted, with the first 12?h being the spin-up time and the remaining 36?h being the effective simulation, so as to capture the diurnal features of the thermally induced winds associated with the land–sea breeze and urban heat island circulations. The different results obtained from the two tests for wind circulation and air pollution dispersion and transportation in the Pearl River Delta region were analyzed. The simulated results show that the both experiments can well simulate land–sea breeze circulation and remarkable land–sea breeze evolution, comparing with observation data. The height of the PBL had a significant diurnal cycle. The structure of the wind field can obviously impact the dispersion of the NO x in three dimensions. Nitrogen oxides mainly diffused along the dominant wind direction (east or southeast wind), therefore the majority of the pollutants accumulated in the northwest region of the fine domain in both simulation experiments. However, it induced the pollutants concentration in an irregular pattern due to the fine-resolution grid spaces and complicated inland wind field in the northwest area of the inner domain. Moreover, increasing the proportion of urban surface caused sensible heat flux increase, latent heat flux decrease and humility reducing relatively in the region of urban surface characteristics apparently. Urbanization will cause pollution accumulated severely over the urban surface.  相似文献   

3.
Measurements of the local distribution of atmospheric nitrogen dioxide (NO(2)) by long-path pulsed differential optical absorption spectroscopy (LP-PDOAS) in Tokyo during August 2008 are presented. Two LP-PDOAS systems simultaneously measured average NO(2) temporal mixing ratios along two different paths from a single observation point. Two flashing aviation obstruction lights, located 7.0 km north and 6.3 km east from the observation point, were used as light sources, allowing spatiotemporal variations of NO(2) in Tokyo to be inferred. The LP-PDOAS data were compared with ground-based data measured using chemiluminescence. Surface wind data indicated that large inhomogeneities were present in the spatial NO(2) distributions under southerly wind conditions, while northerly wind conditions displayed greater homogeneity between the two systems. The higher correlation in the NO(2) mixing ratio between the two LP-PDOAS systems was observed under northerly wind conditions with a correlation factor R(2) = 0.88. We demonstrated that the combined deployment of two LP-PDOAS systems oriented in different directions provides detailed information on the spatial distribution of NO(2).  相似文献   

4.
Renewable energy continues to grow globally, and the number of offshore wind farms is set to increase. Whilst wind energy developments provide energy security and reduced carbon budgets, they may impact bird populations through collision mortality, habitat modification and avoidance. To date, avian collision mortality has received the most attention and collision risk models have been developed to estimate the potential mortality caused by wind turbines. The utility of these models relies not only on their underlying assumptions but also on the data available to ensure the predictions are informative. Using a stochastic collision risk model (sCRM; based on the Band collision risk model) as an example, we explore the importance of bird flight speed and consider how the assumptions of the model influence the sensitivity to flight speed. Furthermore we explore the consequences of using site-specific GPS-derived flight speed rather than a standard generic value, with Lesser Black-backed Gulls Larus fuscus as an example, and consider how this generic value is currently used. We found that the model was most sensitive to the parameters of bird density, non-avoidance rate and percentage of birds at collision risk height, as well as bird flight speed. Using site-specific flight speed data derived from GPS tags rather than a standard value reduced the predicted number of collisions. We highlight that within the model, both the estimation of the probability of collision (PColl) and the flux of birds are sensitive to the bird flight speed; this sensitivity acts in opposite directions but the two do not necessarily balance out. Therefore, when the sCRM is used as generally done, there is little difference in collision estimates if airspeeds (bird flight speed relative to air through which it is moving) are used rather than groundspeeds (bird flight speed relative to ground). Estimates of seabird collision rates in relation to offshore wind farms are impacting future offshore wind development. By using site specific flight speed estimates and, accounting for different speeds in relation to wind direction, we demonstrate that cumulative collision estimates can be affected, highlighting the need for more representative flight speed data and where possible site-specific data.  相似文献   

5.
In this study, the impact of Escherichia coli emissions from a sewage treatment plant on the bathing water quality of Dublin Bay (Ireland) is assessed using a three-dimensional hydro-environmental model. Before being discharged, the effluent from the plant is mixed with cooling water from a thermal?Celectrical power generation plant, creating a warm buoyant sewage plume that can be 7?C9°C higher and is less saline than the ambient water in the bay. The ability of the three-dimensional model in representing such a stratified condition is assessed based on a comparison of its results with two-dimensional modelling results. Hydrodynamic simulations of water levels and flow velocities in Dublin Bay were obtained using the TELEMAC-3D model in one case and the depth-averaged TELEMAC-2D model in the other. The results of each model were separately used as inputs to the water quality model SUBIEF-3D to simulate the transport and fate of E. coli in the bay and to generate maps of E. coli concentrations over the bay. In addition, the necessity for three-dimensional modelling in simulating the effects of wind direction on the dispersion of E. coli was demonstrated by comparing the results of three-dimensional and two-dimensional model simulations with a number of different wind directions. The comparison showed that the three-dimensional model performed better than the depth-averaged model in simulating the hydrodynamics and resulted in better simulation of the water quality processes in the bay. In particular, the three-dimensional model had reasonably simulated the timing of the delivery of E. coli to the bay. Moreover, the effect of wind on the movement of the buoyant plume of pollution and on the E. coli distribution was found to be more pronounced with the three-dimensional hydrodynamics. The results demonstrate the need for three-dimensional simulations in situations of density differences or significant wind influences.  相似文献   

6.
An investigation of the variability in the size distribution of particle adsorbed polycyclic aromatic hydrocarbons (PAHs) on an inner city sampling site showed differences depending on the wind direction. Particle size distributions of PAHs from outdoor air sampling were measured in Munich from 1994 to 1997. The sampling site is located northeast of a crossing with heavy traffic and southwest of a large inner city park. Depending on the wind direction, three different size distributions of particle adsorbed PAHs were observed. The maximum PAH concentration on very small particles (geometric mean diameter 75 nm) was observed with wind from west to southwest coming directly from the crossing area or the roads with heavy traffic. The maximum PAH concentration on particles with geometric mean diameter of 260 nm was found on days with wind from the built-up area north of the sampling site. On particles with geometric mean diameter of 920 nm the maximum PAH concentration was found on days with main wind directions from northeast to east. On these days the wind is blowing from the direction of the city park nearby. The distribution of particle adsorbed PAHs within different particle size classes is substantially influenced by the distance of the sampling site from strong sources of PAH loaded particulate matter.  相似文献   

7.
Data on hydrometeorological conditions and E. coli concentration were simultaneously collected on 57 occasions during the summer of 2000 at 63rd Street Beach, Chicago, Illinois. The data were used to identify and calibrate a statistical regression model aimed at predicting when the bacterial concentration of the beach water was above or below the level considered safe for full body contact. A wide range of hydrological, meteorological, and water quality variables were evaluated as possible predictive variables. These included wind speed and direction, incoming solar radiation (insolation), various time frames of rainfall, air temperature, lake stage and wave height, and water temperature, specific conductance, dissolved oxygen, pH, and turbidity. The best-fit model combined real-time measurements of wind direction and speed (onshore component of resultant wind vector), rainfall, insolation, lake stage, water temperature and turbidity to predict the geometric mean E. coli concentration in the swimming zone of the beach. The model, which contained both additive and multiplicative (interaction) terms, accounted for 71% of the observed variability in the log E. coli concentrations. A comparison between model predictions of when the beach should be closed and when the actual bacterial concentrations were above or below the 235 cfu 100 ml(-1) threshold value, indicated that the model accurately predicted openings versus closures 88% of the time.  相似文献   

8.
An understanding of the scaling laws governing aerosol sampler performance leads to new options for testing aerosol samplers at small scale in a small laboratory wind tunnel. Two methods are described in this paper. The first involves an extension of what is referred to as the "conventional" approach, in which scaled aerosol sampler systems are tested in a small wind tunnel while exposed to relatively monodisperse aerosols. Such aerosols are collected by test and reference samplers respectively and assessed gravimetrically. The new studies were carried out for a modified, low flowrate version of the IOM personal inhalable aerosol sampler. It was shown that such experiments can be carried out with a very high level of repeatability, and this supported the general validity of the aerosol sampler scaling laws. The second method involves a novel testing system and protocol for evaluating the performances of aerosol samplers. Here, scaled aerosol samplers of interest are exposed to polydisperse aerosols, again in a small wind tunnel. In this instance, the sampled particles are counted and sized using a direct-reading aerodynamic particle sizer (the APS). A prototype automated aerosol sampler testing system based on this approach was built and evaluated in preliminary experiments to determine the performance of another modified version of the IOM personal inhalable aerosol sampler. The design of the new test system accounts for the complex fluid mechanical coupling that occurs near the sampler inlet involving the transition between the external flow outside the sampler and the internal airflow inside the sampler, leading in turn to uncontrolled particle losses. The problem was overcome by the insertion of porous plastic foam plugs. where the penetration characteristics are well understood, into the entries of both the test and the reference samplers. Preliminary experiments with this new system also supported the general validity of the aerosol sampler scaling laws. In addition, they demonstrated high potential that this approach may be applied in a standardised aerosol testing method and protocol.  相似文献   

9.
Wind energy is a renewable energy resource that has increased in usage in most countries. Site selection for the establishment of large wind turbines, called wind farms, like any other engineering project, requires basic information and careful planning. This study assessed the possibility of establishing wind farms in Ardabil province in northwestern Iran by using a combination of analytic network process (ANP) and decision making trial and evaluation laboratory (DEMATEL) methods in a geographical information system (GIS) environment. DEMATEL was used to determine the criteria relationships. The weights of the criteria were determined using ANP and the overlaying process was done on GIS. Using 13 information layers in three main criteria including environmental, technical and economical, the land suitability map was produced and reclassified into 5 equally scored divisions from least suitable to most suitable areas. The results showed that about 6.68 % of the area of Ardabil province is most suitable for establishment of wind turbines. Sensitivity analysis shows that significant portions of these most suitable zones coincide with suitable divisions of the input layers. The efficiency and accuracy of the hybrid model (ANP-DEMATEL) was evaluated and the results were compared to the ANP model. The sensitivity analysis, map classification, and factor weights for the two methods showed satisfactory results for the ANP-DEMATEL model in wind power plant site selection.  相似文献   

10.
对南通市区2022年4月初因疫情防控采取全区域静态管理期间的空气质量进行分析,以气象参数、臭氧前体物VOCs和NOx作为分析对象。结果表明:此次污染过程的主导因素是高温、强辐射、低湿和偏南风的气象条件。南通市区处于VOCs控制区,高温、强辐射使得VOCs挥发性增强,浓度升高。偏南方向的苏通园区和能达公园VOCs浓度较高且升幅较大,源解析结果表明这2个点位涂料溶剂使用占比升幅更高,既容易受附近石化和储油库影响,也容易受偏南风向的污染输送影响。据初步统计,静态管理期间南通市区停工数量为80%左右,污染期间NO2浓度高值区主要分布在沿江一带,长江南岸的张家港和常熟地区存在多家高排放企业,在偏南风下,张家港和常熟的污染物极易输送至南通市区。基于空气质量模型WRF-CAMx的O3和PM2.5来源解析结果显示,静态管理期间外来输送明显,占比为68.7%~84.7%。污染期间的船舶排放和二次转化贡献也不容忽视。建议南通市应重点加强工业、油气挥发和涂料溶剂源减排,同时加强区域联防联控,以便进一步改善空气质量。  相似文献   

11.
Tayrona National Natural Park (TNNP) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region also experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. However, the spatial and temporal effects on water quality parameters relevant for coral reef functioning have not been investigated. Therefore, inorganic nutrient, chlorophyll a, and particulate organic carbon (POC) concentrations along with biological O2 demand (BOD), pH, and water clarity directly above local coral reefs (~10 m water depth) were monitored for 25 months in four bays along a distance gradient (12–20 km) to Santa Marta in the southwest and to the first river mouth (17–27 km) in the east. This is by far the most comprehensive coral reefs water quality dataset for the region. Findings revealed that particularly during non-upwelling, chlorophyll a and POC concentrations along with BOD significantly increased with decreasing distance to the rivers in the east, suggesting that the observed spatial water quality decline was triggered by riverine runoff and not by the countercurrent-located Santa Marta. Nitrate, nitrite, and chlorophyll a concentrations significantly increased during upwelling, while pH and water clarity decreased. Generally, water quality in TNNP was close to oligotrophic conditions adequate for coral reef growth during non-upwelling, but exceeded critical threshold values during upwelling and in relation to riverine discharge.  相似文献   

12.
13.
This paper presents a method for appropriate coupling of deterministic and statistical models. In the decision-support system for the Elbe river, a conceptual rainfall-runoff model is used to obtain the discharge statistics and corresponding average number of flood days, which is a key input variable for a rule-based model for floodplain vegetation. The required quality of the discharge time series cannot be determined by a sensitivity analysis because a deterministic model is linked to a statistical model. To solve the problem, artificial discharge time series are generated that mimic the hypothetical output of rainfall-runoff models of different accuracy. The results indicate that a feasible calibration of the rainfall-runoff model is sufficient to obtain consistency with the vegetation model in view of its sensitivity to changes in the number of flood days in the floodplains.  相似文献   

14.
A new model is proposed for estimating horizontal dilution potential of an area using wind data. The mean wind speed and wind direction variation are used as a measure of linear and angular spread of pollutant in the atmosphere. The methodology is applied to monitored hourly wind data for each month of 1 year for wind data collected at Vadodara, Gujarat and monthly dilution potential is estimated. It is found that there is a gradual variation of horizontal dilution potential over a year with limited dilution during post monsoon period i.e., October and November and a high dilution in pre monsoon period i.e., May and June. This information can be used to design air quality sampling network and duration of sampling for source apportionment study. Air pollutant sampling during high dilution period can be carried out for identifying urban and rural dust and wind blown dust from mining activity. Air pollutant sampling during low dilution period can be carried out for capturing large amount of particulate matter from anthropogenic sources like elevated stack of furnace.  相似文献   

15.
The French government has launched three separate calls for tender in July 2011, March 2013, and December 2016 to install 3.5 GW of offshore wind. In addition to contributing to the fulfillment of environmental commitments, the deployment of offshore wind energy is expected to be a lever for economic development. To assess gross economic impacts, mainly in terms of job creation, we built a regional input-output model of the wind farm off Saint-Brieuc located in the region of Brittany, north-western France. Our model indicates that the project will have positive effects on Brittany’s economy. In particular, during the investment phase, the wind farm is expected to lead to €0.38 M/year/MW of added value and 6.03 full-time equivalent (FTE) jobs/year/MW. During the operation and maintenance (O&M) phase, the model predicts the generation of €0.15 M/year/MW of added value and 1.02 FTE jobs/year/MW. These results imply that the project will increase Brittany’s GDP slightly by 0.22 and 0.09% during the investment and O&M phases, respectively. Results also show that out of total wealth created in France, 38 and 66% will be created in Brittany as well as 32 and 51% of employment during respectively investment and O&M phases. A comparative analysis highlights in particular that economic impacts are generally stronger during the investment phase. It also demonstrates that the magnitude of economic impacts depends on the proportion of local industries in the supply chain. Policy implications of our model stress the need to revise the economic, technological, regulatory, and social frameworks within which the offshore wind industry currently operates in France to establish the conditions necessary for its development.  相似文献   

16.
In this paper, we present a general method, based on a convex optimisation technique, that facilitates the coupling of climate and economic models in a cost-benefit framework. As a demonstration of the method, we couple an economic growth model à la Ramsey adapted from DICE-99 with an efficient intermediate complexity climate model, C-GOLDSTEIN, which has highly simplified physics, but fully 3-D ocean dynamics. As in DICE-99, we assume that an economic cost is associated with global temperature change: this change is obtained from the climate model, which is driven by the GHG concentrations computed from the economic growth path. The work extends a previous paper in which these models were coupled in cost-effectiveness mode. Here we consider the more intricate cost-benefit coupling in which the climate impact is not fixed a priori. We implement the coupled model using an oracle-based optimisation technique. Each model is contained in an oracle, which supplies model output and information on its sensitivity to a master program. The algorithm Proximal-ACCPM guarantees the convergence of the procedure under sufficient convexity assumptions. Our results demonstrate the possibility of a consistent, cost-benefit, climate-damage optimisation analysis with a 3-D climate model.  相似文献   

17.
Several wind tunnel experiments of tracer dispersion from reduced-scale landfill models are presented in this paper. Different experimental set-ups, hot-wire anemometry, particle image velocimetry and tracer concentration measurements were used for the characterisation of flow and dispersion phenomena nearby the models. The main aim of these experiments is to build an extensive experimental data set useful for model validation purposes. To demonstrate the potentiality of the experimental data set, a validation exercise on several mathematical models was performed by means of a statistical technique. The experiments highlighted an increase in pollutant ground level concentrations immediately downwind from the landfill because of induced turbulence and mean flow deflection. This phenomenon turns out to be predominant for the dispersion process. Tests with a different set-up showed an important dependence of the dispersion phenomena from the landfill height and highlighted how complex orographic conditions downwind of the landfill do not affect significantly the dispersion behaviour. Validation exercises were useful for model calibration, improving code reliability, as well as evaluating performances. The Van Ulden model proved to give the most encouraging results.  相似文献   

18.
针对2018年3月9—15日京津冀地区的一次空气重污染过程,进行了基于地基颗粒物激光雷达组网的星载-地基联合观测分析。颗粒物激光雷达观测到污染前期为局地污染累积过程,中期有明显的污染物区域传输过程,北京受太行山沿线城市污染输送影响较大。风廓线激光雷达观测结果表明:此次污染过程近地面主要为偏南风且风力较弱,冷空气到来时风向转为较强东北风,导致污染消散。微波辐射计观测到保定在污染过程中出现持续6 d的逆温层,同时在污染过程中近地面相对湿度较高,逆温层被打破后污染开始消散。在污染过程的各个阶段中,污染团的空间分布与变化特征均被很好地反映出来,可见地天联合观测对污染物的累积与输送研究有较大的意义,能对京津冀及周边地区的大气污染联防联控提供有力支持。  相似文献   

19.
对影响佳木斯市大气污染物扩散的因素进行了分析。结果表明,大气稳定度、垂直和水平温度梯度、低空风场引起的平流动力输送、地面粗糙度、湍流运动、雨雾等都不同程度地影响大气污染物的扩散,以一定的传输和扩散规律决定城市大气污染水平的高低,并由此使局部区域污染程度各不相同。城市热岛效应和温度层结是影响大气污染物扩散的重要因素。影响区域主要为城市主导风向下风向的城市东部地区。  相似文献   

20.
Horizontal mixing in shallow lakes plays a significant role in sustaining sound life-supporting processes by facilitating homogenization of water in terms of suspended and dissolved matter. A simple method for the quantification of mixing has been outlined in order to establish a reliable basis of comparison; subsequently, it has been applied to the following studied cases. Mixing has been studied by numerical experiments through the case of the shallow Palic Lake. The mathematical formulation of the applied numerical model is described in detail. In the following, the significance of each current driving force influencing the flow patterns has been analyzed. Wind forcing has by far outweighed other forces. Because of this, focus has been put on the influence of wind action on mixing. The intensity of mixing, induced by characteristic steady winds, has been compared with that produced by unsteady winds. Results at the end of both 30- and 60-day wind forcing periods are presented. They suggest that large-scale circulations dominate the mixing processes. Consequently, a steady wind inducing favorable, far-reaching circulations may result in outstanding mixing in a short period of time. In the long run, however, unsteady winds produce more intensive mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号