首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
石油烃污染地下水原位修复技术研究进展   总被引:15,自引:2,他引:15  
王业耀  孟凡生 《化工环保》2005,25(2):117-120
概述了石油烃污染地下水原位修复技术的进展,包括原位化学氧化、原位电动修复、渗透反应格栅、冲洗、土壤气抽出、地下水曝气、生物修复,并对今后的研究发展趋势进行了展望。  相似文献   

2.
多环芳烃是一种强疏水性有机污染物.土壤是多环芳烃积累富集的主要场所.多环芳烃污染会对生态环境与人体健康造成严重影响.针对多环芳烃污染土壤的修复问题,本文介绍了溶剂萃取、化学氧化、热处理、生物修复和联合修复技术的研究进展,总结了每种修复技术自身的特点、优势和局限性.指出,绿色可持续的生物修复技术以及多种土壤修复技术的整合...  相似文献   

3.
以重庆市某铅污染场地为研究对象,选用多种稳定化药剂对土壤开展稳定化修复技术研究,着重探讨了不同单一药剂与复配药剂对土壤铅浸出浓度的影响。实验结果表明:磷酸二氢钠(MSP)、磷酸氢二钠、磷酸钠和石灰4种无机药剂中MSP的稳定化修复效果最佳,且磷酸盐类的稳定化修复效果整体上优于石灰;MSP与少量有机药剂腐殖酸复配施用的稳定化修复效果优于单独施加MSP;在MSP投加比(与土壤的质量比)为5%、腐殖酸投加比为2%、养护时间为7 d的最优工艺条件下,土壤中铅的浸出浓度由41.70 mg/L降至0.16 mg/L,低于《生活垃圾填埋场污染控制标准》(GB 16889—2008)中规定的0.25 mg/L浓度限值。  相似文献   

4.
分析了Fe~0、Fe~(2+)和Fe~(3+)活化过硫酸盐氧化石油烃的机理,介绍了土壤中石油烃污染物降解的影响因素以及总结了铁活化过硫酸盐修复石油烃污染土壤技术的不足。指出应以铁活化过硫酸盐原位修复作为土壤中高浓度有机污染物的前处置方法,再结合微生物或植物修复等技术,以减少对土壤理化性质的影响;另外,检测仪器的发展有利于土壤修复技术的应用。  相似文献   

5.
张峰  马烈  张芝兰  桂时乔  郭琳 《化工环保》2012,32(5):419-423
综述了Cr的地球化学特性和毒理学特性、化学还原反应机理和作用特点,分析了原位和异位化学还原法在Cr污染土壤修复中的应用,并对技术的工程实践提出建议.  相似文献   

6.
总结了国内外化学修复法和生物修复法修复火炸药生产废水污染土壤的研究进展。比较了各种方法的优缺点,提出了未来火炸药生产废水污染土壤修复技术的研究方向。指出:应将物理修复法、化学修复法及生物修复法相结合,将修复定位于综合化、彻底化及可利用化,以期达到火炸药生产废水污染土壤的无害化治理。  相似文献   

7.
为推广有机污染场地原位电热脱附修复技术,基于华东某退役化工厂污染场地应用原位电加热修复的工程实例,论述了场地污染特点、工程设计情况,总结了工程运行管理情况,分析了场地加热温升、污染物去除效果、修复技术优势等.工程运行结果表明,加热运行250 d后,场地土壤的温度整体达到300℃以上,多环芳烃(PAHs)去除率达到99....  相似文献   

8.
以FeSO4化学还原法为对照,开展硫酸盐还原菌原位修复铬污染土壤的田间试验研究。试验结果表明:微生物法处理后,土壤中Cr(Ⅵ)含量从6.48 mg/kg降至0.95 mg/kg,下降率为85.33%,修复后的土地质量符合国家一类建设用地的标准;土壤浸出液中Cr(Ⅵ)质量浓度从0.162 mg/L降至0.004 mg/L,下降率为97.53%;土壤中硫酸根浓度略有降低,硫酸盐还原菌的丰度显著增加。微生物原位修复铬污染土壤的效果好于化学还原法。  相似文献   

9.
梅竹松  胡相华  吴伟 《化工环保》2018,38(5):599-604
针对某退役化工企业地块的关注污染物硝基甲苯一氯、二氯代物的历史形成、污染状况和土质特点,在小试技术验证的基础上,采用化学淋洗—H2O2-O3-UV复合催化氧化技术进行受污染土壤异位修复的工程实践。结果表明,该技术能较好地适用于关注污染物的土壤修复工程,修复后指标明显优于目标值,且造价和运行费用较低,具有显著的社会效益、经济效益和环境效益,有一定的推广价值。  相似文献   

10.
植物修复石油污染土壤的研究进展   总被引:4,自引:0,他引:4  
卢丽丽  石辉 《化工环保》2007,27(3):245-249
石油污染土壤的植物修复技术以其处理成本低、无二次污染、自然美观等特点,正逐步成为未来石油污染治理研究的一个重要方向。文章综述了植物修复石油污染土壤的研究进展,阐述了植物修复的机理、影响因素、转基因植物的应用及与其他技术的联用,并探讨了植物修复石油污染土壤研究中存在的问题。  相似文献   

11.
In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose‐zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off‐site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot‐test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate‐soil‐oxidant‐demand (PSOD) and the required oxidant dosing for the site. The pilot‐test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct‐push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow‐up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc.  相似文献   

12.
With the successful implementation of in situ chemical oxidation (ISCO) programs to remediate contaminated soil and groundwater aquifers worldwide, ISCO has become established as a traditional remediation technique. On the basis of historical success, expanded ISCO practices are now routinely applied to increasingly difficult geologic environments, including formerly problem locations such as those containing nonaqueous‐phase liquid, fractured bedrock, low‐conductivity media, and highly layered and/or heterogeneous aquifers. Effective delivery of amendment, however, remains the single most important aspect of successful remediation, particularly given the range of potentially applicable delivery methods and site complexities. Selecting the most appropriate technique for any specific site depends upon a clear understanding of the variety of site constraints, including factors such as site conditions, underlying geology, contaminant distribution, technology limitations, and other project‐specific factors. Because the injection program is often the largest cost associated with implementation of an ISCO project, it is critical to develop a cost‐effective injection method for each site. Constant head injection provides a cost‐effective alternative for sites with low‐conductivity lithology(ies). Constant head injection employs a continuous low‐pressure application method to deliver ISCO agents over a long period of time. This synergistic method complements the existing site conditions and heterogeneity, working with the natural conditions, rather than trying to overcome or destroy the site geology using highly aggressive delivery techniques. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The effects of in situ chemical oxidation (ISCO) on biological processes, as reported in the literature, were researched to determine if coupling ISCO with in situ bioremediation could be achieved in field and laboratory experiments. Literature was compiled concerning the effect of ISCO on microbial communities following addition of a chemical oxidant at a range of concentrations designed to treat a variety of subsurface contaminants. The results indicate that although microbial communities may potentially be adversely affected by chemical oxidation in the short term, a rebound of microbial biomass and/or bioremediation activity can be expected. Successfully coupling ISCO with bioremediation in field applications may be a cost‐effective method of achieving risk‐based site remediation goals. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
Surfactants and cosolvents are useful for enhancing the apparent solubility of dense nonaqueous‐phase liquid (DNAPL) compounds during surfactant‐enhanced aquifer remediation (SEAR). In situ chemical oxidation (ISCO) with permanganate, persulfate, and catalyzed hydrogen peroxide has proven to be a cost‐effective and viable remediation technology for the treatment of a wide range of organic contaminants. Coupling compatible remedial technologies either concurrently or sequentially in a treatment train is an emerging concept for more effective cleanup of DNAPL‐contaminated sites. Surfactants are effective for DNAPL mass removal but not useful for dissolved plume treatment. ISCO is effective for plume control and treatment but can be less effective in areas where large masses of DNAPL are present. Therefore, coupling SEAR with ISCO is a logical next step for source‐zone treatment. This article provides a critical review of peer‐reviewed scientific literature, nonreviewed professional journals, and conference proceedings where surfactants/cosolvents and oxidants have been utilized, either concurrently or sequentially, for DNAPL mass removal. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
In situ chemical oxidation (ISCO) typically delivers oxidant solutions into the subsurface for contaminant destruction. Contaminants available to the oxidants, however, are limited by the mass transfer of hydrophobic contaminants into the aqueous phase. ISCO treatments therefore often leave sites with temporarily clean groundwater which is subject to contaminant rebound when sorbed and free phase contaminants leach back into the aqueous phase. Surfactant Enhanced In situ Chemical Oxidation (S‐ISCO®) uses a combined oxidant‐surfactant solution to provide optimized contaminant delivery to the oxidants for destruction via desorption and emulsification of the contaminants by the surfactants. This article provides an overview of S‐ISCO technology, followed by an implementation case study at a coal tar contaminated site in Queens, New York. Included are data points from the site which demonstrate how S‐ISCO delivers desorbed contaminants without uncontrolled contaminant mobilization, as desorbed and emulsified contaminants are immediately available to the simultaneously injected oxidant for reaction. ©2016 Wiley Periodicals, Inc.  相似文献   

16.
This paper compiles a detailed set of in situ chemical oxidation (ISCO) lessons learned pertaining to design, execution, and safety based on global experiences over the last 20 years. While the benefits of a “correct” application are known (e.g., cost effectiveness, speed, permanence of treatment), history also provides examples of a variety of “incorrect” applications. These provide an opportunity to highlight recurring themes that resulted in failures. ISCO is, and will continue to provide, an important remedial tool for site remediation, particularly as a component of a multifaceted approach for addressing large and complex sites. Future success, however, requires an objective understanding of both the benefits and the limitations of the technology. The ability to learn from the mistakes of the past provides an opportunity to eliminate, or at least minimize, them in the future. Over the last 25 years of ISCO application, process understanding and knowledge have improved and evolved. This paper combines a thorough discussion of lessons learned through decades of ISCO implementation throughout all aspects of ISCO projects with an analysis of changes to the ISCO remediation market. By discussing the interplay of these two themes and providing recommendations from collective lessons learned, we hope to improve the future of safe, cost‐effective, and successful applications of ISCO.  相似文献   

17.
Contamination of soil and sediment by pollutants represents a major environmental challenge. Remediation of soil during the original Superfund years consisted primarily of dig and haul, capping, or containment. The 1986 amendments to CERCLA—SARA—provided the incentive for treatment and permanent remedies during site remediation. Thermal treatment, which routinely achieves the low cleanup criteria required by RCRA land-ban regulations, became one of the major technologies used for cleanup under the concept of ARAR. As the remediation industry matured and recognized specific market niches in soil remediation, a number of new technologies emerged. Thermal desorption, bioremediation, soil vapor extraction, soil washing, and soil extraction are being used on sites at which the technology offers advantages over incineration. In addition, a continuing stream of emerging technologies is being presented that requires careful evaluation relative to existing cleanup methods. Each of these technologies offers a range of options for achieving appropriate cleanup criteria, application to different soil matrices, cost, time of remediation, and public acceptability. Balancing cleanup criteria defined by regulation or risk assessment with technology cost and capability affords the opportunity to solve these problems with appropriate balance of cost and protection of human health and the environment.  相似文献   

18.
Analytical techniques for designing of in situ chemical oxidation (ISCO) to treat organics in soil and groundwater are emerging. There are several issues that need to be resolved prior to adopting a standard analytical technique. Some of the more salient issues are discussed. In addition, currently practiced analytical techniques for estimating the oxidant demand for the oxidants permanganate and persulfate are provided. In the absence of analytical measurements, rules of thumb can be used with caution to estimate the overall oxidant demand. © 2003 Wiley Periodicals, Inc.  相似文献   

19.
钱翌  孔祥文 《化工环保》2015,35(2):147-153
综述了物理修复、化学修复、微生物修复及联合修复等几种主要的1,2,4-三氯苯(1,2,4-TCB)环境污染修复技术的研究进展。阐述了各种修复方法的反应原理、修复条件和效果,对比了各种修复方法的优缺点。提出今后的研究方向:解决物理吸附法修复1,2,4-TCB污染后的吸附剂的后续处理问题;优化化学降解1,2,4-TCB的工艺条件,避免二次污染,进行现场试验,实现工程应用;分离、培育1,2,4-TCB的优势降解菌种;深入研究联合修复技术的降解机理,实现1,2,4-TCB的高效、彻底降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号