首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
采用微絮凝—过滤工艺处理油田采出水   总被引:1,自引:0,他引:1  
采用微絮凝—过滤工艺处理油田采出水,筛选出最佳絮凝剂并确定了加入量,研究了微絮凝—过滤工艺现场处理油田采出水的效果。实验结果表明:在进水中ρ(油)和SS分别为60 mg/L和25 mg/L的条件下,出水ρ(油)和SS分别为1 mg/L和3 mg/L,去除率分别达到99%和95%;二级过滤出水达到油田回注水标准;应用微絮凝—过滤工艺效果明显。  相似文献   

2.
采用"电化学除油器—斜板除油器—核桃壳过滤器"模拟装置处理模拟含聚采油污水,考察了有/无清水剂加入条件下含聚污水的处理效果,并对电化学除油机理进行了分析。实验结果表明:各级处理单元的除油率与电化学处理时间成正比,不加入清水剂、电化学处理40 min时,各级处理单元的除油率均超过92%;在电化学除油器前加入清水剂100 mg/L、电化学处理20 min时,各级处理单元的除油率分别为98.8%~99.4%,处理后污水含油量小于30 mg/L,处理效果优于在斜板除油器前加入清水剂;电化学处理与清水剂处理有良好的协同除油效果,可大幅降低清水剂用量。机理分析结果表明,电化学作用主要使吸附于油-水界面的产出聚合物降解、脱稳,实现了对油-水界面膜强度和界面电荷的有效破坏,除油效果优异且处理后的絮体松散、无黏附性。  相似文献   

3.
陈文娟  靖波  胡科  张健 《化工环保》2017,37(2):227-231
为了回注处理海上油田含油污泥,将其与聚合物溶液混合,制备聚合物驱调剖体系。系统评价了含油污泥对污泥-聚合物混合液的溶液性能、使用性能及驱油效果的影响。实验结果表明:当含油污泥浓度小于300 mg/L时,油泥颗粒的粒径范围为0.1~100μm,d_(90)为40~60μm,污泥-聚合物混合液的黏度、抗剪切及抗老化稳定性均得到增强,注入性不受显著影响,阻力系数及残余阻力系数略有增加;当采用油泥浓度为100 mg/L的污泥-聚合物混合液进行驱油实验时,聚驱采收率增幅为7.26百分比,然而含油污泥浓度的进一步升高对提高采收率并不利。  相似文献   

4.
采用化学除油降黏—污泥调理—离心脱水工艺处理某炼油厂废水处理系统的混合污泥,并对工艺条件进行优化。实验结果表明,最佳的工艺条件为:化学除油降黏阶段处理体系的pH=4,反应温度35℃,H2O2加入量2 g/L,m(H2O2)∶m(Fe2+)=4,反应时间60 min;污泥调理反应阶段的CaO加入量7.0 g/L;离心脱水阶段在分离因数为1 558时脱水5 min。在此条件下,得到的泥饼的含水率为70.0%~75.0%(w),含油率小于2%(w),污泥比阻约为3.0×107 s2/g。  相似文献   

5.
《化工环保》2015,(3):246+271+283+287+296+299+304+323+330
<正>一种废水污泥的处理方法该专利涉及一种废水污泥的处理方法。先将废水污泥脱水至含水率为88%~90%(w),再加入氯化铁混合均匀,然后采用氢氧化钙溶液调节污泥的p H,再加入粉煤灰混合均匀,最后采用压滤机压制成含水率小于等于50%(w)的泥块。与现有技术相比,该专利从破壁改性及机械压滤匹配方面入手,通过加入药剂使污泥表面活化改性以改变污泥中水的性质,将结合水转变为自由水,最后采用  相似文献   

6.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水p H 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

7.
以含油浮渣为原料制备含碳吸附剂,并用于含油污水的处理。用比表面分析仪和SEM技术对吸附剂进行表征。通过正交实验和单因素实验考察吸附剂加入量、吸附时间及温度、污水pH对污水处理效果的影响。表征结果显示,含碳吸附剂碳元素含量高达90%(w)以上,表面粗糙,孔径分布以中孔为主,比表面积477.5 m2/g,碘吸附值376.48 mg/g。实验结果表明:在吸附温度30℃及时间60 min、含碳吸附剂加入量20 g/L、污水pH为7的最佳实验条件下,处理初始COD为502.12 mg/L、石油类质量浓度45.31 mg/L.的含油污水,COD和石油类的去除率分别为91.51%和87.1%,处理后的COD和石油类质量浓度分别为42.62 mg/L和5.83 mg/1,达到GB 8978—1996《污水综合排放标准》中的二级排放标准;含碳吸附剂的污水处理效果优于术质活性炭。  相似文献   

8.
以活性炭纤维(ACF)为阴极,Fe0为催化剂,采用电芬顿氧化法对污泥进行处理,考察了影响污泥脱水性能的主要因素,表征了处理前后污泥的表面形貌和结构,分析了污泥胞外聚合物(EPS)中蛋白质和多糖的变化。结果表明:在初始pH 3.0、电流密度30 mA/cm2、Fe0加入量0.5 mmol/L、极板间距2 cm、曝气量1.00 L/min、反应时间30 min的最佳条件下,经脱水处理后,污泥比阻(SRF)和含水率从初始的1.09×1012 cm/g和80.5%分别下降到0.29×1012 cm/g和68.3%;可溶性EPS(S-EPS)中蛋白质和多糖含量分别从18.57 mg/L和2.32 mg/L上升到147.61 mg/L和19.66 mg/L;紧密结合型EPS(TB-EPS)中蛋白质和多糖含量分别从179.29 mg/L和49.60 mg/L下降到53.39 mg/L和14.27 mg/L。电芬顿氧化促进了EPS中大分子有机物向小分子有机物的转化,使蛋白质结构变得松散,持水性...  相似文献   

9.
正石油石化污染控制与处理国家重点实验室(长江大学)成立于2015年4月,依托长江大学化工学院和中石油HSE重点实验室长江大学研究室,以油气田环境保护、石化污染治理为主线,开展油田污水处理回注、污水电脱稳除油、污水缓蚀与阻垢、绿色快速污水深度处理、新型污水反应器、环保型水处理剂、含聚油泥资源化等多项重大和关键技术攻关,广泛应用于油田现场,解决了一系列重要技术难题,基本形成了绿色高效的水处理工程与技术体系。  相似文献   

10.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

11.
针对某低渗透油田企业采出水,开展了现场膜处理小试实验,考察了采用膨化聚四氟乙烯(ePTFE)微滤膜工艺处理采出水达到回注标准的技术可行性,确定了膜前过滤介质及其最佳浓度,并就实际应用进行了工艺设计.采用膜前过滤介质,避免了采出水中的石油类物质对膜产生污堵等负面影响.膜前过滤介质为吸附性介质硅藻土与刚性颗粒介质碳酸钙复配...  相似文献   

12.
采用农药三唑醇生产过程中产生的含铝酸性废水为原料,合成了聚合硫酸铝(PAS)液体混凝剂,并用于厂区污水站好氧池出水的混凝处理。考察了碱化剂用量、聚合温度、聚合时间等合成条件及PAS加入量、混凝pH等混凝条件对混凝效果的影响,并比较了PAS与商售聚合氯化铝(PAC)的混凝效果。实验结果表明:在n(碱化剂)∶n(硫酸铝)为2.1∶1、聚合温度为80℃、聚合时间为60 min的条件下,所得PAS液体混凝剂产品的w(Al2O3)为7.8%~9.0%,盐基度为45%~60%,pH为3.5~4.0,产量为0.75 t/t(以废水计);在PAS加入量为2.0 m L/L、混凝pH为10.0时,COD和SS的去除率则分别达到14.6%和83.0%;该PAS可替代厂区常规使用的商售PAC,日节约废水处理成本5 922元。  相似文献   

13.
采用钼蓝分光光度法测定水中的As(Ⅲ)含量。以10.8%(质量分数,下同)的抗坏血酸、3%的钼酸铵、0.56%的酒石酸锑钾和13.98%的硫酸按照体积比为2∶2∶1∶5配制的混合溶液为显色剂,在P(Ⅴ)加入量为10.00 μmol/L、显色时间为30 min的条件下,As(Ⅲ)质量浓度与吸光度的线性相关性最好。该方法的As(Ⅲ)质量浓度检测范围为0~4 mg/L,加标回收率为92%~103%,相对标准偏差为3.0%~5.6%。  相似文献   

14.
以二甲基二烯丙基氯化铵(DMDAAC)为阳离子单体,苯乙烯、丙烯酸丁酯为疏水单体,十六烷基三甲基溴化铵和聚氧乙烯辛基苯酚醚-10(OP-10)为乳化剂,过硫酸铵为引发剂,采用乳液聚合法制备乳液型清水剂。优化了制备清水剂的工艺条件,考察了清水剂对油田污水的处理效果。实验结果表明:在x(DMDAAC)小于20%、n(苯乙烯)∶n(丙烯酸丁酯)为2∶1、乳化剂占单体质量分数为5%、引发剂占单体质量分数为0.5%的优化条件下可制备形成稳定的阳离子乳液清水剂;分子量越大、x(DMDAAC)越大,清水剂的除油效果越好;在x(DMDAAC)为20%、其他最优条件不变的情况下制备的Q20清水剂使用浓度为30 mg/L时可使油田污水含油量从295 mg/L降至13 mg/L。自制清水剂的除油效果好于市售清水剂。  相似文献   

15.
王超  李刚  单军锋  张杰  张凤刚 《化工环保》2017,37(1):101-105
采用间接加热的热解析技术对海上油田含油钻屑进行处理,考察了热解析处理的效果和影响因素。实验结果表明:在热解析主温度为410.0 ℃下对含油率为14.00%~23.60%(w)的钻屑进行热解析处理,处理后钻屑的石油烃含量低至0.07%;为达到处理后钻屑含油率低于1%的要求,处理速率最高可达2.47 t/h;回收油的主要烃类化合物组成与岩屑油一致,可用于泥浆复配;冷凝回收水的COD及石油类物质超标,处理后可作为循环冷却水的补充水;外排气体的污染物指标达到国家排放标准;该套实验装置处理含油率为14.00%~23.60%的钻屑,柴油消耗量小于15 L/t、电能消耗量小于9 kW·h/t。  相似文献   

16.
分别采用4种纳滤膜处理某炼化公司的反渗透浓水。在初始COD为57.8 mg/L、TOC为23.94 mg/L、ρ(Ca2+)为289.0 mg/L、ρ(Mg2+)为54.6 mg/L、ρ(SO42-)为327.7 mg/L、ρ(Cl-)为1 106.8 mg/L的条件下,经纳滤处理后COD去除率达60%以上,污水COD降至30 mg/L以下,TOC去除率为31.9%~85.5%,阳离子的去除率为33.9%~97.0%,SO42-的去除率为63.3%~97.6%,Cl-的去除率较低。膜A的膜孔分布密集,具有很高的通量,对有机物和无机盐的截留效果较差;膜B和膜C对有机物和二价离子的截留效果较好;膜D的膜孔分布稀松,膜通量最低,对有机物和无机盐的截留能力均较强,但随出水体积的增加,对无机盐的截留能力下降较为明显。4种纳滤膜的性能各异,可满足不同企业的需求,具有良好的应用前景。  相似文献   

17.
邵燕  张炎  何亮亮  黄春梅 《化工环保》2014,34(6):599-602
建立了二硫化碳萃取—气相色谱法同时测定含盐酸废水中甲苯、邻氯甲苯、对氯甲苯和氯化苄的方法,并应用于实际水样的测定。采用二硫化碳萃取含盐酸废水中的甲苯、邻氯甲苯、对氯甲苯、氯化苄,待测物质经30QC3/AC20(30 m×0.32 mm×0.50 μm)毛细管柱气相分离。采用保留时间定性,外标法定量。实验结果表明,甲苯、邻氯甲苯、对氯甲苯和氯化苄的质量浓度在0.2~100.0 mg/L范围内与对应的峰面积呈良好的线性关系,检出限分别为0.09,0.12,0.13,0.10 mg/L。该方法的精密度和准确度较高,相对标准偏差小于2%,加标回收率在96.4%~101.0%之间。  相似文献   

18.
旋流萃取分离技术处理石化电脱盐废水   总被引:1,自引:0,他引:1       下载免费PDF全文
陈永强  龚小芝  陈发 《化工环保》2015,35(3):297-299
采用旋流萃取分离技术处理某炼油厂常减压装置电脱盐废水(初始废水含油量约为5 000 mg/L),优化了废水除油的工艺条件。试验结果表明,废水除油的最佳工艺条件为:旋流萃取分离机中心转子的转速960 r/min、废水流量2 000 L/h、废水温度80℃。废水经旋流萃取分离后,废水的含油量小于200 mg/L,废水除油效果较好;分离后油相的含水量约为0.1%(w),盐质量浓度小于20 mg/L,可回注到常减压装置原料罐循环利用。对于2 Mt/a的常减压装置,采用旋流萃取分离技术后,每年可减少支出100.4万元。  相似文献   

19.
陈燕斌 《化工环保》2012,40(3):342-345
针对已建炼化污水处理装置提质达标的需求,采用旋流强化工艺对缺氧-好氧(A/O)池进行改造,生化出水TN由(32.8±8.9)mg/L降至(25.6±5.7) mg/L,TN平均去除率提高了约10百分点,且出水TN达标率达到100%,出水水质稳定达到GB 31570—2015《石油炼制行业污染物排放标准》的TN排放限值要求。旋流强化工艺技术先进,便于实施,适用于石化行业污水处理装置的改造升级,具有广泛的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号