首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

2.
Kinetics of photodegradation and ozonation of pentachlorophenol   总被引:3,自引:0,他引:3  
The oxidation of 2,3,4,5,6-pentachlorophenol (PCP) has been carried out by a photodecomposition process using a polychromatic UV irradiation, and by an ozonation process. In the photodegradation process, the pH accelerated the decomposition rate and the approximate first-order rate constants were evaluated, with values between 0.16+/-0.005 min(-1) at pH=3 and 0.26+/-0.007 min(-1) at pH=9. A more rigorous kinetic study led to the determination of the quantum yields of the reaction, with values of 200+/-7x10(-3) mol/Eins for pH=3 and 22+/-1.1x10(-3) mol/Eins for pH=9. In the ozonation process, the rate constants for the reaction between ozone and PCP were determined by means of a competition kinetics, with values in the range from 0.67x10(5) to 314x10(5) l/mols. The specific rate constants for the un-dissociated and dissociated forms of PCP were also calculated. Finally, in both processes, the intermediate reaction products were identified, the most important being tetrachlorocatechol, tetrachlorohydroquinone and tetra-p-chlorobenzoquinone. Free chloride ion released, which was favored at high pHs, was also followed in both processes.  相似文献   

3.
Kinetics of quinoline degradation by O3/UV in aqueous phase   总被引:1,自引:0,他引:1  
Wang X  Huang X  Zuo C  Hu H 《Chemosphere》2004,55(5):733-741
The kinetics of quinoline degradation by O3/UV in aqueous phase was studied in this paper. It was found that the stoichiometric factor for the number of ozone molecule consumed by per quinoline molecule was 1. The second-order rate constants at 15 degrees C for the direct reaction of quinoline with ozone and that for the reaction of quinoline with *OH were determined to be 51.0 and 7.24 x 10(9) M(-1)s(-1), respectively. In O3/UV reaction system, *OH was the more important oxidant to degrade quinoline than ozone. For a comparison, in O3 reaction system, the relative importance of the two oxidants depended on the pH value greatly. To make the degradation of quinoline more practical, improvement of the concentration of *OH is more feasible.  相似文献   

4.
The aim of the present study was to analyze and compare the efficacy of UV photodegradation with that of different advanced oxidation processes (O(3), UV/H(2)O(2), O(3)/activated carbon) in the degradation of naphthalenesulfonic acids from aqueous solution and to investigate the kinetics and the mechanism involved in these processes. Results obtained showed that photodegradation with UV radiation (254 nm) of 1-naphthalenesulfonic, 1,5-naphthalendisulfonic and 1,3,6-naphthalentrisulfonic acids is not effective. Presence of duroquinone and 4-carboxybenzophenone during UV irradiation (308-410 nm) of the naphthalenesulfonic acids increased the photodegradation rate. Addition of H(2)O(2) during irradiation of naphthalenesulfonic acids accelerated their elimination, due to the generation of ()OH radicals in the medium. Comparison between UV photodegradation 254 m and the advanced oxidation processes (O(3), O(3)/activated carbon and UV/H(2)O(2)) showed the low-efficacy of the former in the degradation of these compounds from aqueous medium. Thus, among the systems studied, those based on the use of UV/H(2)O(2) and O(3)/activated carbon were the most effective in the oxidation of these contaminants from the medium. This is because of the high-reactivity of naphthalenesulfonic acids with the *OH radicals generated by these two systems. This was confirmed by the values of the reaction rate constant of *OH radicals with these compounds k(OH), obtained by competitive kinetics (5.7 x 10(9) M(-1) s(-1), 5.2 x 10(9) M(-1) s(-1) and 3.7 x 10(9) M(-1) s(-1) for NS, NDS and NTS, respectively).  相似文献   

5.
Bisphenol A (BPA; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol) is a substance typically used in the plastic industry. It is used in the production of epoxy resins, polycarbonate, or fire retardants or as a stabilizer and an antioxidant in numerous types of plastics. Bisphenol A is introduced into the environment via municipal and industrial wastewater. Because of its hydrophobic properties, BPA has the potential for sorption on activated sludge during the biological wastewater treatment processes. This study investigated the degradation of BPA by means of UV-radiation and in the UV/H2O2 process with the presence and absence of hydrocarbonate ions (HCO3(-)) as hydroxyl radicals (OH*) scavengers. The calculated value of quantum yield was equal to 0.18, and the value of BPA rate constant with hydroxyl radicals was equal to 3.3 x 10(9) M(-1) s(-1).  相似文献   

6.
Adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-metylphenoxyacetic acid (MCPA) from aqueous solution onto activated carbons derived from various lignocellulosic materials including willow, miscanthus, flax, and hemp shives was investigated. The adsorption kinetic data were analyzed using two kinetic models: the pseudo-first order and pseudo-second order equations. The adsorption kinetics of both herbicides was better represented by the pseudo-second order model. The adsorption isotherms of 2,4-D and MCPA on the activated carbons were analyzed using the Freundlich and Langmuir isotherm models. The equilibrium data followed the Langmuir isotherm. The effect of pH on the adsorption was also studied. The results showed that the activated carbons prepared from the lignocellulosic materials are efficient adsorbents for the removal of 2,4-D and MCPA from aqueous solutions.  相似文献   

7.
采用O3、H2O2/O3及UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40min,溶液pH8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

8.
The photodestruction of Acid Orange 7 (AO7), an anionic acidic dye, was studied in the UV/H2O2 process. H2O2 and UV light have a negligible effect when they were used on their own. Removal efficiency of AO7 was sensitive to the operational parameters such as initial H2O2 concentration, initial AO7 concentration, pH and different light sources. The photodestruction of AO7 was inhibited by addition of EtOH as an electron scavenger. The semi-logarithmic graphs of the concentration of AO7 versus time (t<30 min) were linear, suggesting pseudo-first order reactions (k(optimum)=0.105 min(-1)). A simple kinetic model is proposed which is in agreement with experimental results.  相似文献   

9.
采用UV/H2O2工艺去除水体中的喹诺酮类抗生素环丙沙星(CIP)。考察了溶液pH值、H2O2投加量以及水体基质对环丙沙星降解效率的影响,分析了降解产物的生成情况。研究表明,环丙沙星的降解符合拟一级反应动力学模型。降解速率受溶液pH值的影响,酸性及中性条件,有利于环丙沙星的降解。H2O2投加量的增大,使得降解速率逐渐增大,但速率增幅逐渐变缓;最佳H2O2/环丙沙星摩尔比为2 000。实际水体中存在的NOM、NO3-,促进了单独UV作用下,环丙沙星的降解。水体中的.OH焠灭剂,抑制了UV/H2O2联合作用下,环丙沙星的降解;实际水体中的光解速率常数低于超纯水中的光解速率常数。GC-MS分析表明,UV/H2O2工艺,使环丙沙星氧化降解生成氨基乙酸、丙二酸、丙三醇和对苯二甲酸等小分子有机物。  相似文献   

10.
Liao CH  Kang SF  Wu FA 《Chemosphere》2001,44(5):1193-1200
Simultaneous effect of inorganic anions, such as chloride and bicarbonate ions, on the scavenging of hydroxyl radicals (HO*) in the H2O2/UV process is the focus of this paper. The model compound of n-chlorobutane (BuCl) was used as the probe of HO*. By changing the pH conditions (2-9) and the concentrations of NaCl (0.25-2500 mM) and NaHCO3 (25 mM), the variation of HO* concentrations and the rate of H2O2 decomposition were compared. In general, the BuCl and H2O2 follow closely the first-order reaction within the first 10 and 40 min, respectively. In the presence of chloride alone at the pH range of 2-6, the HO* concentration in the reaction mixture increases with the increase of pH, and the HO* concentration at pH = 6 is 100 times of that at pH = 2. Including bicarbonate species in the solution, the peak HO* concentration was found at a certain pH, which shifts from 4, 5, to 5-7, as the molar ratios of chloride/bicarbonate species increase from 1 to 100. In addition, without bicarbonate species HO* concentration decreases significantly with increasing chloride concentration but remained rather unchanged beyond 1250 mM. In contrast, the HO* scavenging in the presence of bicarbonate species became relatively significant only when the chloride concentration reached beyond 250 mM. Throughout all experiments of different water quality conditions, the H2O2 decomposition rate remains rather unchanged.  相似文献   

11.
Lee Y  Lee C  Yoon J 《Chemosphere》2003,51(9):963-971
This study demonstrates the importance of reaction temperature on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). In addition, we provide a mechanistic explanation for the temperature dependence of 2,4-D degradation. Thermal enhancement of 2,4-D degradation and H(2)O(2) decomposition was measured in the absence and in the presence of the z.rad;OH scavenger (t-butanol). The half-life for 2,4-D degradation was reduced by more than 70-fold in the absence of t-butanol, and by more than 700-fold, in the presence of t-butanol, when the reaction temperature was increased from 10 to 50 degrees C. In addition, similar temperature relationships were found for H(2)O(2) decomposition. The major reason for the high temperature dependence of the Fe(3+)/H(2)O(2) system in the case of 2,4-D degradation is due to the dependence of the initiation reaction of the Fe(3+)/H(2)O(2) system (i.e., Fe(3+)+H(2)O(2)-->Fe(2+)+HO(2)(z.rad;)+H(+) upon temperature), which is entirely consistent with the kinetics of the activation energy. In the presence of a z.rad;OH scavenger, the initiation reaction of the Fe(3+)/H(2)O(2) system became a determining factor of this temperature dependence, whereas in the absence of z.rad;OH scavenger, several other radical reactions played a role and this result in an apparent decrease in the activation energy for 2,4-D degradation. Moreover, the enhanced 2,4-D removal at higher temperatures did not alter H(2)O(2) utilization. The practical implications of the thermal enhancement of the Fe(3+)/H(2)O(2) system are discussed.  相似文献   

12.
The degradation of 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as chlorophenoxy herbicides, as well as of 3,6-dichloro-2-methoxybenzoic acid (dicamba) as chlorobenzoic herbicide, has been studied by peroxi-coagulation. This electrochemical method yields a very effective depollution of all compounds in acidic aqueous medium of pH 3.0 working under pH regulation, since they are oxidized with hydroxyl radicals produced from Fenton's reaction between Fe(2+) and H(2)O(2) generated by the corresponding Fe anode and O(2)-diffusion cathode. Their products can then be removed by mineralization or coagulation with the Fe(OH)(3) precipitate formed. Both degradative paths compete at low currents, but coagulation predominates at high currents. The peroxi-coagulation process of dicamba at I>or=300 mA leads to more than 90% of coagulation, being much more efficient than its comparative electro-Fenton treatment with a Pt anode and 1 mM Fe(2+), where only mineralization takes place. For the chlorophenoxy compounds, electro-Fenton gives a slightly lower depollution than peroxi-coagulation, because more easily oxidable products are produced. Oxidation of chlorinated products during peroxi-coagulation is accompanied by the release of chloride ion to the solution. The efficiency of this method decreases with increasing electrolysis time and current. The decay of all herbicides follows a pseudo-first-order reaction, with a similar constant rate for 4-CPA, MCPA, 2,4-D and 2,4,5-T, and a higher value for dicamba.  相似文献   

13.
研究了UV/H2O2工艺对十二烷基苯磺酸钠(LAS)的去除效果、溶液中阴离子对LAS降解的影响及机理.结果表明:UV/H2O2工艺可以有效地去除水中的LAS;在H2O2投加量为8 mg/L,14 W低压汞灯照射下,LAS在蒸馏水和自来水中的反应速率常数分别为0.018 0 、0.012 2 min-1;NO-3、Cl-、SO2-4和HCO-3对LAS光降解有抑制作用,当该4种离子摩尔浓度均分别为5、10、15 mmol/L时,对LAS光降解的抑制程度为HCO-3》NO-3》Cl-》SO2-4,且随着离子摩尔浓度的增大,抑制作用增强;LAS在自来水中的反应速率常数低于在蒸馏水中的反应速率常数是由于水中多种离子影响的结果.  相似文献   

14.
Liao CH  Lu MC  Su SH 《Chemosphere》2001,44(5):913-919
The purpose of this study is to reveal the role of cupric ions as a natural water contaminant in the H2O2/UV oxidation of humic acids. Humic acids are naturally occurring organic matter and exhibit a strong tendency of complexation with some transition metal ions. Chlorination of humic acids causes potential health hazards due to formation of trihalomethane (THM). The removal of THM precursors has become an issue of public concern. The H2O2/UV process is capable of mineralizing humic acids due to formation of a strong oxidant, hydroxyl radicals, in reaction solution. Experiments were conducted in a re-circulated photoreactor. Different cupric concentrations (0-3.8 mg/l) and different pH values (4-9) were controlled to determine their effects on the degradation of humic acids, UV light absorbance at 254 nm, and H2O2. The presence of cupric ions inhibits humic mineralization and decreases the rate of destruction of humic acids which absorb UV light at 254 nm. On the other hand, the higher the cupric concentration, the lower the H2O2 decomposition rate. In the studied pH range, the minimum of total organic carbon (TOC) removal occurs at pH = 6 in the presence of 2.6 mg/l of cupric ions; both acidification (pH = 4) and alkaline condition (pH = 9) lead to a better removal of TOC. It is inferred from this study that the cupric-complexed form of humic acids is more refractory than the non-complexed one.  相似文献   

15.
The UV/H2O2-induced degradation of carbamazepine, a worldwide used antiepileptic drug, recently found as contaminant in many municipal sewage treatment plant (STP) effluents and other aquatic environments, is investigated. The oxidation treatment caused an effective removal of the drug. At complete abatement of the substrate after 4 min treatment, a 35% value of removed total organic carbon (TOC) was obtained. A kinetic constant of (2.05+/-0.14) x 10(9) lmol(-1)s(-1) was determined for OH radical attack to carbamazepine in the UV/H2O2 process. Preparative TLC of the reaction mixture led to the isolation of acridine-9-carboxaldehyde as a reaction intermediate. HPLC and GC/MS analysis indicated formation of small amounts of acridine, salicylic acid, catechol and anthranilic acid among the reaction products. Under the same reaction conditions, synthetically prepared 10,11-epoxycarbamazepine was easily degraded to acridine as main product, suggesting that this epoxide is a likely intermediate in the oxidative conversion of carbamazepine to acridine. Under sunlight irradiation, carbamazepine in water underwent slow degradation to afford likewise acridine as main product. In view of the mutagenic properties of acridine, these results would raise important issues concerning the possible environmental impact of carbamazepine release through domestic wastewaters and support the importance of prolonged oxidation treatments to ensure complete degradation of aromatic intermediates.  相似文献   

16.
Lee Y  Jeong J  Lee C  Kim S  Yoon J 《Chemosphere》2003,51(9):901-912
The influence of various reaction parameters on herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) removal were examined in the photo/ferrioxalate/H(2)O(2) system, with regard to: (1) sulfate, phosphate, and z.rad;OH scavenger, as solution constituent; and (2) light intensity, ferrioxalate, H(2)O(2), and oxalate concentration, as operating parameter. In terms of 2,4-D removal, the photo/ferrioxalate/H(2)O(2) system has always been superior to the photo/Ferric ion/H(2)O(2) system, despite the high presence of anions (sulfate 100 mM, phosphate 1 mM) or z.rad;OH scavenger. Not only the rate of 2,4-D removal, but also the decomposition rate of H(2)O(2) and oxalate proportionally increase with light intensity. The ferrioxalate concentration determines the light absorption fraction, and thus, controls the rates of 2,4-D removal, and the decomposition of H(2)O(2) and oxalate, are predicted from kinetic formulations. The optimal concentration of H(2)O(2) and oxalate, according to the extent of the z.rad;OH scavenging reaction with these reagents, has been demonstrated for 2,4-D removal. It was found that an increasing oxalate concentration, which bears the burden of increased dissolved organic carbon (DOC), does not occur. This is because its decomposition, as a result of the photochemical reduction of the ferric oxalate complex, results in a decrease of the equivalent DOC. The importance of the key reaction factors to be considered, when applying this system to real wastewater treatment, is also discussed.  相似文献   

17.
一种光催化体系光催化降解苯胺的研究   总被引:9,自引:2,他引:7  
以钛酸丁酯为原料.以膨润土为载体,用酸性溶胶法合成TiO2纳米复合物,并利用该复合物作催化剂,在H2O2存在下进行光催化降解苯胺溶液。结果表明,该催化剂在UV/H2O2系统中对苯胺溶液有很好的光催化降解效果,其效果优于纯TiO2;H2O2的存在提高了苯胺光催化降解速率,在本实验条件下其最佳摩尔浓度是5mmol/L;溶液pH是影响反应速率的重要因素.pH在中性范围内具有更强的光催化活性;该体系中苯胺能够有效地被降解,其光催化反应遵循一级反应动力学规律。  相似文献   

18.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

19.
Lee C  Yoon J 《Chemosphere》2004,56(10):923-934
The thermal enhancement of the formation of *OH by the hv/Fe(III)/H2O2 system (including the Fe(III)/H2O2 system) was quantitatively investigated with reaction temperatures ranging from 25 to 50 degrees C. A temperature dependent kinetic model for the hv/Fe(III)/H2O2 system, incorporating 12 major reactions with no fitted rate constants or activation energies, was developed, and successfully explained the experimental measurements. Particularly, the thermal enhancement of Fe(OH)2+ photolysis which is the most significant step in the hv/Fe(III)/H2O2 system was effectively explained by two factors; (1) the variation of the Fe(OH)2+ concentration with temperature, and (2) the temperature dependence of the quantum yield for Fe(OH)2+ photolysis (measured activation energy=11.4 kJ mol(-1)). Although in both the hv/Fe(III)/H2O2 and Fe(III)/H2O2 systems, elevated temperatures enhanced the formation of *OH, the thermal enhancement was much higher in the dark Fe(III)/H2O2 system than the hv/Fe(III)/H2O2 system. Furthermore, it was found that the relative thermal enhancement of the formation of *OH in the presence of *OH scavengers (tert-butyl alcohol) was magnified in the Fe(III)/H2O2 system but was not in the hv/Fe(III)/H2O2 system.  相似文献   

20.
High volume air sampling in the Canadian Prairies was used to characterize atmospheric concentrations for 10 herbicides (alachlor, atrazine, ethalfluralin, metolachlor, 2,4-D, dicamba, bromoxynil, MCPA, trifluralin, and triallate) along a 500-km north-south transect. Atmospheric concentration measurements at various altitudes identified that of the six herbicides present in the highest concentrations, triallate was strongly influenced by local sources, while 2,4-D, dicamba, bromoxynil, MCPA and trifluralin were dominated by regional atmospheric transport. Concentrations of the herbicides measured at various altitudes were compared with dry deposition rates measured using a dry/wet deposition sampler and used to calculate deposition velocities V(d). The primary atmospheric transport mechanism for MCPA and bromoxynil was shown to be adsorption to particles dispersed in the atmosphere, with the same mechanism also confirmed for 2,4-D and dicamba, while trifluralin was shown to be transported mainly in the gas phase. This method of calculation indicated that transportation of triallate was influenced by particle adsorption. Weekly maximum atmospheric loadings of the major herbicides present in the Prairies were estimated to range from 73 kg for trifluralin to 541 kg for 2,4-D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号