首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Winter Creek is a tributary of the Washita River in south-western Oklahoma. The Soil Conservation Service installed floodwater retarding structures which controlled runoff from 56 percent of a 33-square-mile (8550-hectare) gaged drainage area. Application of a hydrologic model to the flood peaks indicated that the structural treatment reduced the flood peaks an average of 61 percent. The Winter Creek channel has narrowed and deepened since the structural treatment was applied. The severe bank erosion occurring before treatment has been arrested and sediment yield from the watershed has been reduced 50 to 60 percent. In some reaches of the channel there has been a dense growth of trees in recent years.  相似文献   

2.
ABSTRACT: Integrated watershed management in the Lower Mississippi Alluvial Plain (Delta) requires blending federal, state, and local authority. The federal government has preeminent authority over interstate navigable waters. Conversely, state and local governments have authority vital for comprehensive watershed management. In the Delta, integrating three broad legal and administrative regimes: (1) flood control, (2) agricultural watershed management, and (3) natural resources and environmental management, is vital for comprehensive intrastate watershed, and interstate river basin management. Federal Mississippi River flood control projects incorporated previous state and local efforts. Similarly, federal agricultural programs in the River's tributary headwaters adopted watershed management and were integrated into flood control efforts. These legal and administrative regimes implement national policy largely in cooperation with and through technical and financial assistance to local agencies such as levee commissions and soil and water conservation districts. This administrative infrastructure could address new national concerns such as nonpoint source pollution which require a watershed scale management approach. However, the natural resources and environmental management regime lacks a local administrative infrastructure. Many governmental and non governmental coordinating organizations have recently formed to address this shortcoming in the Delta. With federal and state leadership and support, these organizations could provide mechanisms to better integrate natural resources and environmental issues into the Delta's existing local administrative infrastructure.  相似文献   

3.
ABSTRACT: West Bitter Creek floodwater retarding structure site 3 in South Central Oklahoma was instrumented and records obtained and analyzed to obtain information concerning an impoundment water budget that is useful to landowners and designers of these impoundments. On-site loss of water from the impoundment was only 17 percent of the inflow during three years when the annual precipitation averaged 26 inches and the annual inflow averaged 1.4 inches. Runoff from an eroded area with no farm ponds was about 70 percent greater per unit area than from a portion of the watershed where 71 percent of the drainage area was controlled by farm ponds. A previous study indicated, however, that the ponds were reducing runoff only 13 percent. Loss of top soil increases runoff considerably. Only 24 percent of the total runoff into the impoundment was base flow. The flow rate into the impoundment was less than 0.05 cfs 70 percent of the time, and the inflow rate exceeded 10 cfs only 1 percent of the time. SCS runoff curve numbers varied between 57 and 96 for the impoundment watershed with an inverse relation between precipitation amount and curve number apprently caused by partial area runoff from impervious and semi-impervious areas. A comparison of measured event runoff versus event runoff computed by the SCS curve numbers gave an r2 of only 0.44. However, the total computed surface runoff for eight years of record was less than 1 percent below the measured runoff which indicated the curve number method was a good tool for predicting long term runoff for the watershed.  相似文献   

4.
ABSTRACT: A “user-friendly” computer program has been developed for application in personal computers for preliminary design, evaluation, and cost effectiveness analysis of various best management practice (BMP) measures to control stormwater quantity and quality. The algorithms utilize the SCS TR-55 method for calculating runoff hydrographs for a single storm event and a first order pollutant washoff equation to generate pollutographs. Sensitivity analyses based on different policy scenarios is performed on a hypothetical watershed for the purpose of illustration. Three types of BMP measures, namely detention ponds (dry, wet, and extended wet ponds), infiltration trenches, and porous pavements are considered. It is found that the extended wet ponds have the best cost effective performance of the measures evaluated.  相似文献   

5.
ABSTRACT: This paper describes a concerted effort by the Taiwan Water Resources Bureau, the City of Taipei, and the Bureau of Fei‐tsui Reservoir Management to protect the water quality in the Fei‐tsui Reservoir.The reservoir is the major source of water supply for over two million people in the metropolitan area of Taipei. Over the years the reservoir has suffered from siltation and more recently eutrophication. The sources of the pollution are traced to the hundreds of tea gardens, rice fields and other agricultural areas in the watershed and to urban sources such as construction sites. Large amounts of nutrients enter the reservoir by way of storm water runoff during storm or typhoon events. Since 1999, various agencies have worked to initiate an effort to reduce nonpoint pollution in the Fei‐Tsui Reservoir watershed. Practices being considered include nonstructural measures such as nutrient management, and structural measures such as swales, detention basins, and wetlands, in addition to erosion and sediment control methods. A number of field tests have been completed on the performance of selected best management practices (BMPs). A strategy for implementing the BMPs at the watershed scale has been developed based on a total maximum daily load (TMDL) analysis that is reported in this paper.  相似文献   

6.
ABSTRACT: This paper demonstrates how satellite image data [e.g., from Landsat 5 Thematic Mapper (TM)], in conjunction with an urban growth model and simple runoff calculations, can be used to estimate future surface runoff and, by implication, water quality within a watershed. To illustrate the method, predictions of land use change and surface runoff are shown for Spring Creek Watershed, a medium sized urbanizing watershed in Central Pennsylvania. Land cover classifications for this watershed were created from images for summertime 1986 and 1996 and subsequently used as input to the Clarke urban growth model, called SLEUTH, to predict land use changes to the year 2025. Simulations with this model show a progressive growth in the percentage of urban pixels and in impervious surface area in the watershed but also an increase in woodland, primarily in previously clear‐cut areas. Given that woodland area will continue to increase in area, surface runoff into Spring Creek is predicted to remain only slightly above present level. However, should the woodland amount fail to increase, surface runoff is then predicted to increase more significantly during the next 25 years. Finally, the concept of urban sprawl is addressed within the context of predicted increases in urbanization by relating the implied increase in impervious surface area to population density within the watershed.  相似文献   

7.
ABSTRACT: Bayesian and non-Bayesian flood levee design methods that account for the uncertainty due to limited record length are compared using a case study. The first method, Bayesian decision theory (BDT), imbeds the uncertainty in the parameters of the yearly peak stage into a loss function. The optimum design of the flood levee, called Bayes design, corresponds to the minimum expected loss, called Bayes risk. The second method, induced safety algorithm (ISA), computes a margin of safety to be added to either an existing levee or a levee designed by classical benefit-cost analysis. The design decision is shown to fluctuate as different record lengths are considered. For short record lengths, BDT, which takes small sample bias into account, appears to yield a more conservative design than ISA. On the other hand, ISA, which is simple to implement, seems to be preferable to BDT for longer record lengths.  相似文献   

8.
ABSTRACT: Following the Midwest flood of 1993, a study was initiated along a 39-mile segment of the Missouri River to determine if there was an association between woody corridors and levee stability. A systematic sample of levee failures revealed that primary levees which did not fail had a significantly wider woody corridor than failed levees. Analysis of the total inventory of failed levees revealed that as the width of the woody corridor decreased, the length of the levee failure increased. Number of levee failures and their severity of damage could be reduced if woody corridors were at least 300 feet wide.  相似文献   

9.
Damodaram, Chandana, Marcio H. Giacomoni, C. Prakash Khedun, Hillary Holmes, Andrea Ryan, William Saour, and Emily M. Zechman, 2010. Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management. Journal of the American Water Resources Association (JAWRA) 1-12. DOI: 10.1111/j.1752-1688.2010.00462.x Abstract: Urbanization causes increased stormwater runoff volumes, leading to erosion, flooding, and the degradation of instream ecosystem health. Although Best Management Practices (BMPs) are used widely as a means for controlling flood runoff events, Low Impact Development (LID) options have been proposed as an alternative approach to better mimic the natural flow regime by using decentralized designs to control stormwater runoff at the source, rather than at a centralized location in the watershed. For highly urbanized areas, LID practices such as rainwater harvesting, green roofs, and permeable pavements can be used to retrofit existing infrastructure and reduce runoff volumes and peak flows. This paper describes a modeling approach to incorporate these LID practices in an existing hydrologic model to estimate the effects of LID choices on streamflow. The modeling approach has been applied to a watershed located on the campus of Texas A&M University in College Station, Texas, to predict the stormwater reductions resulting from retrofitting existing infrastructure with LID technologies. Results demonstrate that use of these LID practices yield significant stormwater control for small events and less control for flood events. A combined BMP-LID approach is tested for runoff control for both flood and frequent rainfall events.  相似文献   

10.
ABSTRACT: In North America the four successive winters from 1974-1975 through 1977–1978 were very different from each other in terms of atmospheric circulation and resulting surface weather conditions. The first year of the sequence there was a near normal circulation pattern. The following years were characterized by the gradual amplification of an upper atmosphere ridge over the West Coast coupled with an eastward displacement of a long-wave trough east of the Rocky Mountains. These changes in circulation brought below normal temperatures to the Midwest, below normal precipition and increasing snowfall which reached record levels in February 1978. These atmospheric changes brought about changes in the flow of the Kankakee River-Total runoff in the winter half-year dropped as precipitation and temperatures dropped; there was a marked retarding of winter runoff and the yield of the watershed increased.  相似文献   

11.
Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how watershed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high nutrient export.  相似文献   

12.
Stream ecosystems are increasingly at risk for thermal impairment as urbanization intensifies, resulting in more heated runoff from impervious cover that is less likely to be cooled naturally. While several best management practices, including bioretention filters, have been able to reduce thermal pollution, success has been limited. The extent of thermal mitigation required to prevent ecological damage remains unknown. A calibrated runoff temperature model of a case study watershed in Blacksburg, VA was developed to determine the cumulative treatment volume of bioretention filters required to reduce thermal impacts caused by runoff from development in the watershed to regulated biologically acceptable levels. A future build out scenario of the study watershed was also analyzed. Results from this study established that runoff thermal pollution cannot be fully reduced to goal thresholds during all storms using bioretention filter retrofits. While retrofitting significantly decreased temperatures and heat exports relative to the controls, increasing treatment volumes did not really enhance mitigation. Alternate thermal mitigation methods that actively remove runoff volume should be considered where more thermal mitigation is required.  相似文献   

13.
ABSTRACT. In urban hydrologic studies, it is often necessary to determine the effect of changes in urban land use patterns on such runoff characteristics as flood peaks and flow volumes. Nonparametric statistical methods have certain properties that make them a valuable tool for detecting hydrologic change caused by a treatment, such as urbanization, that changes watershed over a period of time. As many hydrologists do not have a working familiarity with nonparametric methods, a number of them are used for illustrative purposes to analyze the effect of urbanization on 24 years of annual flood peaks for a Louisville, Kentucky, watershed. In the example, urbanization was found to increase the central tendency, but not the dispersion of the peaks. Peak flows modeled by holding watershed parameters constant were also found to be increasing because of an upward trend in precipitation. By following the numerical examples in the paper and looking up test statistics in referenced sources, the reader can easily apply these methods to other situations.  相似文献   

14.
ABSTRACT: Within the flood plain of the lower reach of Peaks Branch, a stream in east Dallas Texas, 500 buildings would be partially inundated by the 100-year flood. The fully-developed watershed and flood plain mainly accommodate low-cost housing. Eight alternative flooding remedies, ranging from no action to stream channelization to complete redevelopment, are considered. The alternates are evaluated in terms of their relative safety, effects on neighborhoods, required relocations of families and businesses, initial costs, and maintenance costs. Creation of a stream-side greenway, offering lakes and parks, is recommended. This plan best balances costs and required relocations with community benefits, including flood protection.  相似文献   

15.
ABSTRACT: There is a need to provide flood protection while maintaining stable bed and bank conditions in the riverine system, to stabilize earth embankment dams and spiliways, and to stabilize highway or railway embankments and levee systems. One approach to providing erosion protection and stabilization of channel banks, embankments and spill conveyances is with articulated concrete block systems. Numerous articulated concrete block systems are available for bank stabilization. However, prior to field installations few means are available to evaluate how well these block systems perform. To assist the designer in predicting site specific suitability, a series of hydraulic testing protocols have been developed to analyze block system performance. Two articulated block system testing protocols are presented to indicate how block hydraulic characteristics may be determined and provide performance assurance to both the designer and the owner.  相似文献   

16.
ABSTRACT: This study presents the results of fecal coliform (FC) sampling in the Rawls Creek, South Carolina, watershed during 1999 and 2000. The work was undertaken because the watershed is listed on the 303(d) list for South Carolina due to FC excursions. The watershed is 43.8 percent residential, 35 percent forest, 5.7 percent mixed urban, 4.9 percent commercial, and 4.8 percent agriculture. Samples were taken at 15 stations during eight field trips divided into two phases to characterize FC inputs from subbasins and to integrate results from upstream sampling. FC concentrations ranged from 135 to 730 colonies/100 ml. Results suggest that retention ponds in the area are a significant factor in attenuation of FC concentrations. Catchments with the largest contiguous impervious areas are the greatest source of FC. The highest concentrations of FC were observed at stations just downstream from a large detention basin that intercepts storm runoff from a large commercial area. Further analysis of the design and performance of that structure is suggested. The Koon Branch tributary is less than 20 percent of the land area in the watershed but may contribute 40 percent of the fecal loading. The results of this study confirm the importance of site assessments to aid understanding of nonpoint source pollution in complex watersheds.  相似文献   

17.
ABSTRACT: An approach is developed for incorporating the uncertainty of parameters for estimating runoff in the design of polder systems in ungaged watersheds. Monte Carlo Simulation is used to derive a set of realizations of streamflow hydrographs for a given design rainstorm using the U. S. Soil Conservation Service (SCS) unit hydrograph model. The inverse of the SCS curve number, which is a function of the antecedent runoff condition in the SCS model, is the random input in the Monte Carlo Simulation. Monte Carlo realizations of streamfiow hydrographs are used to simulate the performance of a polder flood protection system. From this simulation the probability of occurrence of flood levels for a particular hydraulic design may be used to evaluate its effectiveness. This approach is demonstrated for the Pluit Polder flood protection system for the City of Jakarta, Indonesia. While the results of the application indicate that uncertainty in the antecedent runoff condition is important, the effects of uncertainty in rainfall data, in additional runoff parameters, such as time to peak, in the hydraulic design, and in the rainfall-runoff model selected should also be considered. Although, the SCS model is limited to agricultural conditions, the approach presented herein may be applied to other flood control systems if appropriate storm runoff models are selected.  相似文献   

18.
ABSTRACT: The aim of this paper is to compare two views of flood management and thus add to the present thinking of living with floods as opposed to the traditional approach of flood control. The traditional pathway has widely been adopted in developed countries and aims to control floodwaters by means of dams and dikes. The alternative pathway tends towards a policy whereby society lives with the floods by being prepared and having the right damage reduction measures in place. In this paper two pathways are tentatively compared for the Lower Incomati Basin, Mozambique. In the design cultural theory is considered, as is how the design of each path may look according to different management perspectives. The Lower Incomati Basin provides an interesting case study as it is in a relatively undeveloped state. Hence, it is an ideal area for conducting research into the application of alternative flood management strategies. The preliminary results suggest that both pathways are feasible. However, considering recent hydrological extremes such as the 2000 floods, the resilient pathway may ultimately be a more appealing flood management strategy.  相似文献   

19.
ABSTRACT: Runoff Routing model (RORB) is a general model applicable to both rural and urban catchments. The performance of the model is illustrated through its simulation of flood runoff hydrographs in an urban catchment in Singapore. The essential feature of the model is the routing of rainfall excesses on subareas through some arrangement of concentrated storage elements, which represent the distribution of temporary storage of flood runoff on the watershed. This nonlinear routing procedure of the storage elements has two common parameters, kc and m. With the limited data available, these two parameter values were determined through calibration runs. The same set of values of kc and m were then used in the model to determine the runoff hydrographs of five other storms selected from the rainfall events between 1979 and 1981. It was found that the simulated runoff hydrographs matched reasonably well with the recorded hydrographs.  相似文献   

20.
ABSTRACT: To alleviate serious flooding problems brought upon by rapid urbanization in the Beargrass Creek watershed, located in Louisville, Kentucky, the U.S. Army Corps of Engineers undertook a major flood study in 1973. In order to predict flood conditions in 1990, the year when the watershed was expected to undergo complete urbanization, trends in the Clark Instantaneous Unit Hydrograph (Clark IUH) parameters were utilized to determine the 1990 unit hydrograph and flood conditions. Based on the results from this flood study, this paper demonstrates the applicability of using projected Clark IUH parameters for modeling future runoff conditions in an urbanizing watershed. Values of these parameters, as estimated from maximum annual historical flood data, are used to develop regression models for predicting future Clark IUH parameters. Using the projected parameters, selected annual flood events since 1973 are simulated in order to verify the accuracy of these projections. Results show a close correspondence between the simulated and observed flood characteristics. Hence, the use of projected Clark IUH parameters is an appropriate procedure for modeling future runoff conditions in an urbanizing watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号