首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: In 2002, Wyoming became the first state to complete development of a statewide 1:24,000‐scale Watershed Boundary Dataset (WBD) under the new Federal Standards for Delineation of Hydrologic Unit Boundaries. The product was developed through the coordinated efforts of numerous state, federal, and local entities both within Wyoming and in neighboring states. Development of a comprehensive, standardized hydrologic unit boundary dataset in a “headwaters” state such as Wyoming poses a number of unique challenges. This paper details the WBD's development in Wyoming, highlighting technical methodology development and interagency coordination strategies. Evolution of the WBD standard is reviewed, addressing inconsistencies between definitions for hydro‐logic units and “true” watershed delineations. While automated methods are improving, manual and semi‐automated techniques continue to serve as valuable approaches to hydrologic unit boundary delineation given the quality of digital terrain models and the multijurisdictional nature of watershed based management. This case study provides insight on future development and maintenance of the WBD within and across other states and regions of the country and on opportunities for linking the WBD to related water resource geospatial data products like the National Hydrography Dataset.  相似文献   

2.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) has been used for hydrologic analyses at various watershed scales. However, little is known about the model's performance in coastal watersheds. In this study SWAT was evaluated for its applicability in three Louisiana coastal watersheds: the Amite, Tickfaw, and Tangipahoa River watersheds. The model was calibrated with daily discharge from 1976 to 1977 and validated from 1979 to 1999 for the Amite and Tangipahoa and with daily discharge from 1979 to 1989 for the Tickfaw. Deviation of mean discharge and the Nash‐Sutcliffe model efficiency were used to evaluate model behavior. The study found that Manning's roughness coefficient for the main channel, SCS curve number, and soil evaporation compensation factor were the most sensitive parameters for these coastal watersheds. The Manning's roughness coefficient showed the greatest effect on the response time of surface runoff, suggesting the critical role of channel routing in hydrologic modeling for lowland watersheds. The SWAT model demonstrated an excellent performance, with Nash‐Sutcliffe efficiencies of 0.935, 0.940, and 0.960 for calibrations of the Amite, Tickfaw, and Tangipahoa watersheds, respectively, and of 0.851, 0.811, and 0.867 for validations. The modeling results demonstrate that SWAT is capable of simulating hydrologic processes for medium scale to large scale coastal lowland watersheds in Louisiana.  相似文献   

3.
ABSTRACT: Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land‐surface form, geology, and climate. The basic land‐surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground‐water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land‐surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake‐research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic‐land‐scapes concept to evaluate the effect of ground water on the degree of mineralization and major‐ion chemistry of lakes that lie within ground‐water flow systems.  相似文献   

4.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

5.
ABSTRACT: Bacterial contamination of surface waters is attributed to both urban and agricultural land use practices and is one of the most frequently cited reasons for failure to meet standards established under the Clean Water Act (CWA) (P.L. 92–500). Statewide modeling can be used to determine if bacterial contamination occurs predominantly in urban or agricultural settings. Such information is useful for directing future monitoring and allocating resources for protection and restoration activities. Logistic regression was used to model the likelihood of bacterial contamination using watershed factors for the state of Maryland. Watershed factors included land cover, soils, topography, hydrography, locations of septic systems, and animal feeding operations. Results indicated that bacterial contamination occurred predominantly in urban settings. Likelihood of bacterial contamination was highest for small watersheds with well drained and erodible soils and a high proportion of urban land adjacent to streams. The number of septic systems and animal feeding operations and the amount of agricultural land were not significant explanatory factors. The urban infrastructure tends to “connect” more of the watershed to the stream network through the creation of roads, storm sewers, and wastewater treatment plants. This may partly explain the relationship between urbanization and bacterial contamination found in this study.  相似文献   

6.
ABSTRACT: This paper presents an integrated optimal control model that optimizes economic performance of reservoir management in watersheds in which there are significant economic and hydrologic interdependencies. The model is solved using the General Algebraic Modeling System (GAMS). Results show that application of this model to New Mexico's Rio Chama basin can increase total system benefits over historical benefits by exploiting complementarities between hydroelectricity production, instream recreation, and downstream lake recreation.  相似文献   

7.
Hydrologic response, defined as the annual direct runoff divided by the annual precipitation, was computed for twenty-one watersheds in or near western Massachusetts, using a total of 232 years of hydrologic records. Variability of the results over the period of analysis was greater than is desirable to inspire confidence in the usefulness of the hydrologic response function; however, the results do suggest that the hydrologic response concept, with appropriate refinements, could be applied successfully to the problem of delineating hydrologic provinces and determination of drainage and storage in unregulated watersheds.  相似文献   

8.
ABSTRACT: The goal of this research was to develop a methodology for modeling a bioinfiltration best management practice (BMP) built in a dormitory area on the campus of Villanova University in Pennsylvania. The objectives were to quantify the behavior of the BMP through the different seasons and rainfall events; better understand the physical processes governing the system's behavior; and develop design criteria. The BMP was constructed in 2001 by excavating within an existing traffic island, backfilling with a sand/soil mixture, and planting with salt tolerant grasses and shrubs native to the Atlantic shore. It receives runoff from the asphalt (0.26 hectare) and turf (0.27 hectare) surfaces of the watershed. Monitoring supported by the hydrologic model shows that the facility infiltrates a significant fraction of the annual precipitation, substantially reducing the delivery of nonpoint source pollution and erosive surges downstream. A hydrologic model was developed using HEC‐HMS to represent the site and the BMP using Green‐Ampt and kinematic wave methods. Instruments allow comparison of the modeled and measured water budget parameters. The model, incorporating seasonally variable parameters, predicts the volumes infiltrated and bypassed by the BMP, confirming the applicability of the selected methods for the analysis of bioinfiltration BMPs.  相似文献   

9.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

10.
ABSTRACT: Techniques for predicting the hydrologic effects of grazing schemes have heretofore been unavailable. The available literature on grazing intensity influences on infiltration rates is used as a basis for a model of infiltration behavior in response to grazing systems. Background, development, cautions, and an example are given.  相似文献   

11.
ABSTRACT: The great temporal and spatial variability of pine flat-woods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The FLATWOODS model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites in north central Florida. Three harvesting treatments (Wetland Harvesting, Wetland + Upland Harvesting, and Control) under three typical climatic conditions (dry, wet, and normal precipitation years) were simulated to study the potential first-year effects of common forest harvesting activities on flatwoods. Long-term (15 years) simulation was conducted to evaluate the hydrologic impacts at different stages of stand rotation. This simulation study concludes that forest harvesting has substantial effects on hydrology during dry periods and clear cutting of both wetlands and uplands has greater influence on the water regimes than partial harvesting. Compared to hilly regions, forest harvesting in the Florida coastal plains has less impact on water yield.  相似文献   

12.
Stochastic modeling of vector hydrologic sequences is examined with a general class of space-time autoregressive integrated moving average (STARIMA) models. The models describe spatial and temporal autocorrelatjon, through dependent variables lagged both in space and time. The model structures incorporate a hierarchical ordering scheme to map the vector of observations into a network configuration. The neighboring structure used introduces a physical/geographical hierarchy to enable the model identification procedures to assist in determining appropriate correlative relationships. The three-stage iterative space-time model building procedure is illustrated using average monthly streamfiow data for a four-station network of the Southeastern Hydropower System.  相似文献   

13.
ABSTRACT: A growing concern for environmental quality paralleled with increasing demands on our forest resources has prompted the Washington State Department of Natural Resources to evaluate simulation modeling as a technique for analyzing management decisions in terms of their environmental effects. The evaluation focused on a system of integrated models developed at the University of Washington which simulate processes and activities within the forest ecosystem. A major part of the system is a hydrologic model which predicts changes in discharge, stream temperature, and concentrations of suspended sediment and dissolved oxygen based on information generated by other models representing intensive management practices. The evaluation consisted of applying the system to a 72,000 acre tract of forest land, validating the models with two years of discharge and water quality data from a 93,000 acre watershed, and determining the pertinence of hydrologic modeling for management purposes. Results show several potential uses of hydrologic modeling for forest management planning, especially for analyzing the effects of timber harvesting strategies on water quality.  相似文献   

14.
Schwarz, Gregory E., Richard B. Alexander, Richard A. Smith, and Stephen D. Preston, 2011. The Regionalization of National‐Scale SPARROW Models for Stream Nutrients. Journal of the American Water Resources Association (JAWRA) 47(5):1151‐1172. DOI: 10.1111/j.1752‐1688.2011.00581.x Abstract: This analysis modifies the parsimonious specification of recently published total nitrogen (TN) and total phosphorus (TP) national‐scale SPAtially Referenced Regressions On Watershed attributes models to allow each model coefficient to vary geographically among three major river basins of the conterminous United States. Regionalization of the national models reduces the standard errors in the prediction of TN and TP loads, expressed as a percentage of the predicted load, by about 6 and 7%. We develop and apply a method for combining national‐scale and regional‐scale information to estimate a hybrid model that imposes cross‐region constraints that limit regional variation in model coefficients, effectively reducing the number of free model parameters as compared to a collection of independent regional models. The hybrid TN and TP regional models have improved model fit relative to the respective national models, reducing the standard error in the prediction of loads, expressed as a percentage of load, by about 5 and 4%. Only 19% of the TN hybrid model coefficients and just 2% of the TP hybrid model coefficients show evidence of substantial regional specificity (more than ±100% deviation from the national model estimate). The hybrid models have much greater precision in the estimated coefficients than do the unconstrained regional models, demonstrating the efficacy of pooling information across regions to improve regional models.  相似文献   

15.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

16.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   

17.
ABSTRACT: Base-flow samples were collected from 47 sampling sites for four seasons from 1990–91 on the Delmarva Peninsula in Delaware and Maryland to relate stream chemistry to a “hydrologic landscape” and season. Two hydrologic landscapes were determined: (1) a well-drained landscape, characterized by a combination of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained landscape, characterized by a combination of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slope. Concentrations of nitrogen were significantly related to the hydrologic landscape. Nitrogen concentrations tended to be higher in well-drained landscapes than in poorly drained ones. The highest instantaneous nitrogen yields occurred in well-drained landscapes during the winter. These yields were extrapolated over the part of the study area draining to Chesapeake Bay in order to provide a rough estimate of nitrogen load from base flow to the Bay and its estuarine tributaries. This estimate was compared to an estimate made by extrapolating from an existing long-term monitoring station. The load estimate from the stream survey data was 5 ± 106 kg of N per year, which was about four times the estimate, made from the existing long-term monitoring station. The stream-survey estimate of base flow represents about 40 percent of the total nitrogen load that enters the Bay and estuarine tributaries from all sources in the study area.  相似文献   

18.
ABSTRACT: This paper describes the application of a river basin scale hydrologic model (described in Part I) to Richland and Chambers Creeks watershed (RC watershed) in upper Trinity River basin in Texas. The inputs to the model were accumulated from hydro-graphic and geographic databases and maps using a raster-based GIS. Available weather data from 12 weather stations in and around the watershed and stream flow data from two USGS stream gauge station for the period 1965 to 1984 were used in the flow calibration and validation. Sediment calibration was carried out for the period 1988 through 1994 using the 1994 sediment survey data from the Richland-Chambers lake. Sediment validation was conducted on a subwatershed (Mill Creek watershed) situated on Chambers Creek of the RC watershed. The model was evaluated by well established statistical and visual methods and was found to explain at least 84 percent and 65 percent of the variability in the observed stream flow data for the calibration and validation periods, respectively. In addition, the model predicted the accumulated sediment load within 2 percent and 9 percent from the observed data for the RC watershed and Mill Creek watershed, respectively.  相似文献   

19.
ABSTRACT: The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base-flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well-drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.  相似文献   

20.
ABSTRACT: The use of watersheds to conduct research on land/water relationships has expanded recently to include both extrapolation and reporting of water resource information and ecosystem management. More often than not, hydrologic units (HUs) are used for these purposes, with the implication that hydrologic units are synonymous with watersheds. Whereas true topographic watersheds are areas within which apparent surface water drains to a particular point, generally only 45 percent of all hydrologic units, regardless of their hierarchical level, meet this definition. Because the area contributing to the downstream point in many hydrologic units extends far beyond the unit boundaries, use of the hydrologic unit framework to show regional and national patterns of water quality and other environmental resources can result in incorrect and misleading illustrations. In this paper, the implications of this misuse are demonstrated using four adjacent HUs in central Texas. A more effective way of showing regional patterns in environmental resources is by using data from true watersheds representative of different ecological regions containing particular mosaics of geographical characteristics affecting differences in ecosystems and water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号