首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Stream sediments play a large role in the transport and fate of soluble reactive phosphorus (SRP) in stream ecosystems, and equilibrium P concentrations (EPC 0) of benthic sediments at which P is neither adsorbed nor desorbed are often related to stream water SRP concentrations. This study evaluated (i) the variation among water chemistry and sediment-P interactions among streams draining catchments that varied in the land use; (ii) the relations between SRP concentration, sediment EPC 0, and other measured abiotic factors (e.g., particle size distribution, slope of linear sorption isotherms, etc.) in the stream sediments; and (iii) the use of the traditional Mehlich-3 (M3) soil extraction on stream sediments to elucidate other abiotic factors (e.g, M3P, P saturation ratio, etc.) related to SRP concentration in stream sediments. Stream water and sediments were sampled at 22 selected Ozark streams in northwest Arkansas during fall 2003 and spring 2004. Nitrate-N concentrations in the water column (r = 0.69) and modified P saturation ratios (PSR mod) ) of the benthic sediments (r = 0.79) at the selected streams increased with an increase in percent pasture in the catchments, whereas SRP concentration (r = -0.56) and Mehlich-3-extractable P (M3P) content (r = -0.47) decreased with an increase in the percent forested area. Soluble reactive P concentrations in the stream water were positively correlated to sediment EPC 0 (r = 0.51), although sediment EPC(0) was generally greater than SRP. The M3 soil extraction was useful in identifying abiotic factors related to SRP concentrations in the selected streams, in particular SRP concentrations were positively correlated to M3P contents (r = 0.50) and PSR mod (r = 0.71) of the benthic sediments. Thus, M3P and EPC 0 estimates from stream sediments may be valuable yet simple indicators of whether benthic sediments act as sinks or sources of P in fluvial systems, as well as estimating changes in stream SRP concentrations.  相似文献   

2.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

3.
Bioavailable phosphorus (BAP) in stormwater runoff is a key issue for control of eutrophication in agriculturally impacted watersheds. Laboratory experiments were conducted in soil runoff boxes to determine BAP content in simulated storm runoff in 10 (mostly) calcareous soils from the Minnesota River basin in southern Minnesota. The soluble reactive phosphorus (SRP) portion of the runoff BAP was significantly correlated with soil Mehlich-III P, Olsen P, and water-extractable P (all r2 > 0.90 and p < 0.001). A linear relationship (r2 = 0.88, p < 0.001) also was obtained between SRP in runoff and the phosphorus saturation index based on sorptivity (PSIs) calculated with sorptivity as a measure of the inherent soil P sorption capacity. Runoff levels of BAP estimated with iron oxide-impregnated paper were predicted well by various soil test P methods and the PSI, of the soils, but correlation coefficients between these variables and runoff BAP were generally lower than those for runoff SRP. Using these relationships and critical BAP levels for stream eutrophication, we found corresponding critical levels of soil Mehlich-III P and Olsen P (which should not be exceeded) to be 65 to 85 and 40 to 55 mg kg(-1), respectively.  相似文献   

4.
During a 1-year period, we sampled stream water total phosphorus (TP) concentrations daily and soluble reactive phosphorus (SRP) concentrations weekly in four Seattle area streams spanning a gradient of forested to urban-dominated land cover. The objective of this study was to develop time series models describing stream water phosphorus concentration dependence on seasonal variation in stream base flows, short-term flow fluctuations, antecedent flow conditions, and rainfall. Stream water SRP concentrations varied on average by ±18% or ±5.7 μg/L from one week to another, whereas TP varied ±48% or ±32.5 μg/L from one week to another. On average, SRP constituted about 47% of TP. Stream water SRP concentrations followed a simple sine-wave annual cycle with high concentrations during the low-flow summer period and low concentrations during the high-flow winter period in three of the four study sites. These trends are probably due to seasonal variation in the relative contributions of groundwater and subsurface flows to stream flow. In forested Issaquah Creek, SRP concentrations were relatively constant throughout the year except during the fall, when a major salmon spawning run occurred in the stream and SRP concentrations increased markedly. Stream water SRP concentrations were statistically unrelated to short-term flow fluctuations, antecedent flow conditions, or rainfall in each of the study streams. Stream water TP concentrations are highly variable and strongly influenced by short-term flow fluctuations. Each of the processes assessed had statistically significant correlations with TP concentrations, with seasonal base flow being the strongest, followed by antecedent flow conditions, short-term flow fluctuations, and rainfall. Times series models for each individual stream were able to predict ∼70% of the variability in the SRP annual cycle in three of the four streams (r2 = 0.57–0.81), whereas individual TP models explained ∼50% of the annual cycle in all streams (r2 = 0.39–0.59). Overall, time series models for SRP and TP dynamics explained 82% and 76% of the variability for these variables, respectively. Our results indicate that SRP, the most biologically available and therefore most important phosphorus fraction, has simpler and easier-to-predict seasonal and weekly dynamics.  相似文献   

5.
Soil phosphorus (P) concentrations typically are greater in surface soils compared with subsurface soils. Surface soils have a greater chance to interact with runoff leading to P transport to streams. The thin surface layer where P concentrates is referred to as the mixing layer denoting where water and chemicals mix during transport. The objective of this study was to evaluate the effect of hydrologic flow paths on soluble reactive phosphorus (SRP) loss at two temperatures. Laboratory flumes were built to simulate infiltration, return flow, saturation excess, and interflow, and subsequent interaction with the mixing layer. The sandy loam soil in the flumes was kept at saturation throughout all experiments, so that biochemical effects were normalized. Flow through the flumes was maintained at 3.6 mm/h for 24 to 99 h (at 6 and 25 degrees C) with water entering and exiting the flumes at different ports (to simulate different flow paths) or as low intensity rainfall. Experiments were performed with and without an artificially created P-enriched surface layer (5 mm thick, total P increased from 1010 mg/kg in the original soil to 2310 mg/kg by addition of dissolved phosphate). Results indicated that (i) SRP release was greater in soil with a mixing layer than in soil without a mixing layer; (ii) SRP release was greater during experiments at 25 degrees C than at 6 degrees C; (iii) at 25 degrees C, SRP release was greatest when water traversed the mixing layer in the upward direction (i.e., in return flow), and by flow parallel to the mixing layer (i.e., surface runoff); and (iv) at 6 degrees C, SRP release in subsurface flow following rainfall was slightly greater than in return flow and infiltration. Our results confirmed the presence of a variable, temperature-dependent desorption process when runoff water interacted with the mixing layer. Our findings have important implications for how different water flow paths in and over the soil interact with P in the soil, and what the ultimate concentration will be in runoff and interflow.  相似文献   

6.
ABSTRACT: An export coefficient modeling approach was used to assess the influence of land use on phosphorus loading to a Southern Ontario stream. A model was constructed for the 1995–1996 water year and calibrated within ± 3 percent of the observed mean concentration of total phosphorus. It was found that runoff from urban areas contributed most to the loading of phosphorus to the stream. When the model was assessed by running it for the 1977–1978 water year, using water quality and land use data collected independently, agreement within ± 7 percent was obtained. The model was then used to forecast the impact of future urban development proposed for the watershed, in terms of phosphorus loading, and to evaluate the reduction in loading resulting from several urban best management practices (BMP). It was determined that phosphorus removal will have to be applied to all the urban runoff from the watershed to appreciably reduce stream phosphorus concentration. Of the BMP designs assessed, an infiltration pond system resulted in the greatest phosphorus load reduction, 50 percent from the 1995–1996 baseline.  相似文献   

7.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

8.
Abstract: Successful nonpoint source pollution control using best management practice placement is a complex process that requires in‐depth knowledge of the locations of runoff source areas in a watershed. Currently, very few simulation tools are capable of identifying critical runoff source areas on hillslopes and those available are not directly applicable under all runoff conditions. In this paper, a comparison of two geographic information system (GIS)‐based approaches: a topographic index model and a likelihood indicator model is presented, in predicting likely locations of saturation excess and infiltration excess runoff source areas in a hillslope of the Savoy Experimental Watershed located in northwest Arkansas. Based on intensive data collected from a two‐year field study, the spatial distributions of hydrologic variables were processed using GIS software to develop the models. The likelihood indicator model was used to produce probability surfaces that indicated the likelihood of location of both saturation and infiltration excess runoff mechanisms on the hillslope. Overall accuracies of the likelihood indicator model predictions varied between 81 and 87% for the infiltration excess and saturation excess runoff locations respectively. On the basis of accuracy of prediction, the likelihood indicator models were found to be superior (accuracy 81‐87%) to the predications made by the topographic index model (accuracy 69.5%). By combining statistics with GIS, runoff source areas on a hillslope can be identified by incorporating easily determined hydrologic measurements (such as bulk density, porosity, slope, depth to bed rock, depth to water table) and could serve as a watershed management tool for identifying critical runoff source areas in locations where the topographic index or other similar methods do not provide reliable results.  相似文献   

9.
Phosphorus runoff: effect of tillage and soil phosphorus levels   总被引:2,自引:0,他引:2  
Continued inputs of fertilizer and manure in excess of crop requirements have led to a build-up of soil phosphorus (P) levels and increased P runoff from agricultural soils. The objectives of this study were to determine the effects of two tillage practices (no-till and chisel plow) and a range of soil P levels on the concentration and loads of dissolved reactive phosphorus (DRP), algal-available phosphorus (AAP), and total phosphorus (TP) losses in runoff, and to evaluate the P loss immediately following tillage in the fall, and after six months, in the spring. Rain simulations were conducted on a Typic Argiudoll under a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Elapsed time after tillage (fall vs. spring) was not related to any form of P in runoff. No-till runoff averaged 0.40 mg L(-1) and 0.05 kg ha(-1) DRP and chisel-plow plots averaged 0.24 mg L(-1) and 0.02 kg ha(-1) DRP concentration and loads, respectively. The relationship between DRP and Bray P1 extraction values was approximated by a logistic function (S-shaped curve) for no-till plots and by a linear function for tilled plots. No significant differences were observed between tillage systems for TP and AAP in runoff. Bray P1 soil extraction values and sediment concentration in runoff were significantly related to the concentrations and amounts of AAP and TP in runoff. These results suggest that soil Bray P1 extraction values and runoff sediment concentration are two easily measured variables for adequate prediction of P runoff from agricultural fields.  相似文献   

10.
Pollution of water resources by phosphorus (P) is a critical issue in regions with agricultural and urban development. In this study, we estimated P inputs from agricultural and urban sources in 24 catchments draining to the Central Valley in California and compared them with measured river P export to investigate hydrologic and anthropogenic factors affecting regional P retention and export. Using spatially explicit information on fertilizer use, livestock population, agricultural production, and human population, we calculated that net surface balances for anthropogenic P ranged from -12 to 648 kg P km yr in the early 2000s. Inorganic P fertilizer and manure P comprised the largest fraction of total input for all but two catchments. From 2000 to 2003, a median of 7% (range, -287 to 88%) of net annual anthropogenic P input was exported as total P (TP). Yields (kg P km yr) of dissolved inorganic P (DIP), dissolved organic P, particulate P, and TP were not significantly related to catchment-level, per area anthropogenic P input. However, there were significant relationships between mean annual P concentrations and P input from inorganic fertilizers and manure due to the concentration of agricultural land near catchment mouths and regional variation in runoff. Catchment-level P fertilizer and manure inputs explained 4 to 23% more variance in mean annual DIP and TP concentrations than percent of catchment area in agriculture. This study suggests that spatially explicit estimates of anthropogenic P input can help identify sources of multiple forms of P exported in rivers at management-relevant spatial scales.  相似文献   

11.
ABSTRACT: A main water quality concern is accelerated eutrophication of fresh waters from nonpoint source pollution, particularly nutrient transport in surface runoff from agricultural areas and confined animal feeding operations. This study examined nutrient and β17‐estradiol concentrations in runoff from small plots where six poultry litters were applied at a rate of about 67 kg/ha of total phosphorus (TP). The six poultry litter treatments included pelleted compost, pelleted litter, raw litter, alum (treated) litter, pelleted alum litter, and normal litter (no alum). Four replicates of the six poultry litter treatments and a control (plots without poultry litter application) were used in this study. Rainfall simulations at intensity of 50 mm/hr were conducted immediately following poultry litter application to the plots and again 30 days later. Composite runoff samples were analyzed for soluble reactive phosphorus (SRP), ammonia (NH4), nitrate (NO3), TP, total nitrogen (TN) and β17‐estradiol concentrations. In general, poultry litter applications increased nutrient and β17‐estradiol concentrations in runoff water. Ammonia and P concentrations in runoff water from the first simulation were correlated to application rates of water extractable NH4 (R2= 0.70) and P (R2= 0.68) in the manure. Results suggest that alum applications to poultry litter in houses in between flocks is an effective best management practice for reducing phosphorus (P) and β17‐estradiol concentrations in runoff and that pelleted poultry litters may increase the potential for P and β17‐estradiol loss in runoff water. Inferences regarding pelleted poultry litters should be viewed cautiously, because the environmental consequence of pelleting poultry litters needs additional investigation.  相似文献   

12.
ABSTRACT: Nutrient loading from beef pastures located within the northern Lake Okeechobee watershed in Florida, has been identified as a source of phosphorus contributing to the accelerated eutrophication of the lake. Since 1989 within the watershed, 557 agricultural drainage sites, mainly beef pasture, have been monitored for compliance under a regulatory program. Of those sites, 154 were actively monitored for phosphorus concentrations from October 1, 1998, to September 30, 1999. Of these 154 sites, 77 were considered to be out of compliance (OOC). An OOC site is defined as having runoff with a 12‐month average phosphorus concentration exceeding the permitted discharge limit. The average annual phosphorous load from the 77 OOC sites for an eight‐year study period from October 1, 1991, to September 30, 1999, was estimated using measured concentration values and simulated runoff obtained from an agricultural nonpoint source pollution model, CREAMS‐WT. The 77 OOC sites produced an estimated average annual 46 metric tonnes of phosphorus load, of which an estimated 22 tonnes of phosphorus reached Lake Okeechobee on an average annual basis. The remaining estimated average annual 24 tonnes of phosphorus load was retained by streams and wetlands in the discharge transport system between the sites and the lake. The estimated average annual load reaching Lake Okeechobee from the OOC sites represented 11 percent of the phosphorus load above a five‐year average annual target load for the lake. However, the OOC site drainage areas represented only 3 percent of the northern watershed that drains into the lake. Of the 77 OOC sites, 12 sites had an average annual phosphorus loading rate equal to or greater than 3.0 kg/ha and were placed on the priority list for the Critical Restoration Project in the Lake Okeechobee watershed. To estimate the possible phosphorus load reductions from the 77 sites, two scenarios were modeled. The first scenario reduced phosphorus concentrations in runoff to the permitted discharge limits under the Lake Okeechobee regulatory program. The second scenario changed current land uses to native rangeland with an estimated annual offsite total phosphorus areal loading rate of 0.114 kg/ha. These two scenarios are hypothetical with assumed concentration values and loading rate. Model results showed that the first management scenario reduced the average annual phosphorus load to the lake by an estimated 15 tonnes. The second scenario reduced the average annual phosphorus load to the lake by an estimated 21 tonnes.  相似文献   

13.
This study quantified nonpoint source nitrogen (NPS‐N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide tabular data summaries and graphic overlay products to support the development of management approaches to best achieve established N reduction goals. First, a remote sensor derived, land cover classification was performed to support modeling needs. Modeling efforts included the development of a mass balance model to quantify potential N sources and sinks, followed by a precipitation event driven hydrologic model to effectively transport excess N across the landscape to individual stream reaches to support subsequent labeling of transported N values corresponding to source origin. Results indicated that agricultural land contributed 55 percent of the total annual NPS‐N loadings, followed by forested land at 23 percent (background), and urban areas at 21 percent. Average annual N source contributions were quantified for agricultural (1.4 kg/ha), urban (1.2 kg/ha), and forested cover types (0.5 kg/ha). Nonpoint source‐N contributions were greatest during the winter (40 percent), followed by spring (32 percent), summer (28 percent), and fall (0.3 percent). Seasonal total N loadings shifted from urban dominated and forest dominated sources during the winter, to agricultural sources in the spring and summer. A quantitative assessment of the significant NRB land use activities indicated that high (greater than 70 percent impervious) and medium (greater than 35 percent impervious) density urban development were the greatest contributors of NPS‐N on a unit area basis (1.9 and 1.6 kg/ha/yr, respectively), followed by row crops and pasture/hay cover types (1.4 kg/ha/yr).  相似文献   

14.
ABSTRACT: Five types of land use/land covers in the West Tiaoxi watershed of China were studied for nutrient losses in artificial rainstorm runoff. A self‐designed rainfall simulator was used. In situ rainfall simulations were used to: (1) compare the concentrations of nitrogen and phosphorous in different land use/land covers and (2) evaluate the flux of nitrogen and phosphorous export from runoff and sediment in various types of land use/land covers. Three duplicated experiments were carried out under rain intensity of 2 mm/min, each lasting 32 minutes on a 3 m2 plot. Characteristics of various species of nitrogen and phosphorous in runoff and sediment were investigated. The results showed that the concentrations of total nitrogen (TN) and total phosphorous (TP) were greatest in runoff from mulberry trees and smallest from pine forest. The TN and TP export was mainly from suspended particulate in runoff. TN and TP exports from the top 10 cm layer of five types of land use/land covers were estimated as high as 4.66 to 9.40 g/m2 and 2.57 to 4.89 g/m2, respectively, of which exports through sediment of runoff accounted for more than 90 percent and 97 percent. The rate of TN and TP exports ranged from 2.68 to approximately 14.48 and 0.45 to approximately 4.11 mg/m2/min in runoff; these rates were much lower than those of 100.01 to approximately 172.67 and 72.82 to approximately 135.96 mg/m2/min in the runoff sediment.  相似文献   

15.
Tile drainage water from agricultural fields commonly exceeds environmental guidelines for phosphorus (P) in rivers and streams. The loss of P through artificial drainage is spatially and temporally variable, and is related to local factors. This study characterizes variability in total P (TP) and soluble reactive P (SRP) concentrations in weekly drainage samples from 39 agricultural fields in Nova Scotia, Canada, from April 2002 through December 2003. We examined connections between P concentrations and the factors: (i) soil texture; (ii) discharge flow rate; (iii) soil test P (STP); (iv) manure type; and (v) crop cover. Generally, variability between fields and samples was great, and fields with standard deviations exceeding the mean for TP, SRP, and flow rate were 71, 54, and 79%, respectively. It was evident that poultry and swine manure contributed to high STPs, and to constantly high TP concentrations with high proportions of SRP. Concentrations varied from week to week, and particularly in April, May, October, and November when the greatest TP, SRP, and flow rate averages were measured. Mean TP concentrations exceed the USEPA (1994) TP guideline of 0.10 mg L(-1) at 82% of the fields, and periodically concentrations more than 10 times, and occasionally more than 50 times higher than the guideline were found. The proportion of SRP in TP had a tendency to be higher when TP levels were high in coarse textured soils. In Nova Scotia, dairy manure is most often applied on permanent cover crops, which did not show as much P concentration variability as crop rotations. Daily or hourly observation of short-term increases in P concentrations related to the described factors would help to characterize the changes in P concentrations observed during frequent heavy drainage flow events.  相似文献   

16.
Manure applied to agricultural land at rates that exceed annual crop nutrient requirements can be a source of phosphorus in runoff. Manure incorporation is often recommended to reduce phosphorus losses in runoff. A small plot rainfall simulation study was conducted at three sites in Alberta to evaluate the effects of manure rate and incorporation on phosphorus losses. Treatments consisted of three solid beef cattle manure application rates (50, 100, and 200 kg ha(-1) total phosphorus), an unmanured control, and two incorporation methods (nonincorporated and incorporated with one pass of a double disk). Simulated rain was applied to soils with freshly applied and residual (1 yr after application) manure at 70 mm h(-1) to produce 30 min of runoff. Soil test phosphorus (STP), total phosphorus (TP), and dissolved reactive phosphorus (DRP) concentrations in runoff increased with manure rate for fresh and residual manure. Initial abstraction and runoff volumes did not change with manure rate. Initial abstraction, runoff volumes, and phosphorus concentrations did not change with manure incorporation at Lacombe and Wilson, but initial abstraction volumes increased and runoff volumes and phosphorus concentrations decreased with incorporation of fresh manure at Beaverlodge. Phosphorus losses in runoff were directly related to phosphorus additions. Extraction coefficients (slopes of the regression lines) for the linear relationships between residual manure STP and phosphorus in runoff were 0.007 to 0.015 for runoff TP and 0.006 to 0.013 for runoff DRP. While incorporation of manure with a double disk had no significant effect on phosphorus losses in runoff from manure-amended soils 1 yr after application, incorporation of manure is still recommended to control nitrogen losses, improve crop nutrient uptake, and potentially reduce odor concerns.  相似文献   

17.
Many source and transport factors control P loss from agricultural landscapes; however, little information is available on how these factors are linked at a watershed scale. Thus, we investigated mechanisms controlling P release from soil and stream sediments in relation to storm and baseflow P concentrations at four flumes and in the channel of an agricultural watershed. Baseflow dissolved reactive phosphorus (DRP) concentrations were greater at the watershed outflow (Flume 1; 0.042 mg L(-1)) than uppermost flume (Flume 4; 0.028 mg L(-1)). Conversely, DRP concentrations were greater at Flume 4 (0.304 mg L(-1)) than Flume 1 (0.128 mg L(-1)) during stormflow. Similar trends in total phosphorus (TP) concentration were also observed. During stormflow, stream P concentrations are controlled by overland flow-generated erosion from areas of the watershed coincident with high soil P. In-channel decreases in P concentration during stormflow were attributed to sediment deposition, resorption of P, and dilution. The increase in baseflow P concentrations downstream was controlled by channel sediments. Phosphorus sorption maximum of Flume 4 sediment (532 mg kg(-1)) was greater than at the outlet Flume 1 (227 mg kg(-1)). Indeed, the decrease in P desorption between Flumes 1 and 4 sediment (0.046 to 0.025 mg L(-1)) was similar to the difference in baseflow DRP between Flumes 1 and 4 (0.042 to 0.028 mg L(-1)). This study shows that erosion, soil P concentration, and channel sediment P sorption properties influence streamflow DRP and TP. A better understanding of the spatial and temporal distribution of these processes and their connectivity over the landscape will aid targeting remedial practices.  相似文献   

18.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

19.
Growing interest in corn (Zea mays L.) silage utilization on Wisconsin dairy farms may have implications for nutrient losses from agricultural lands. Increasing the silage cutting height will increase residue cover and could reduce off-site migration of sediments and associated constituents compared with conventional silage harvesting. We examined the effects of residue level and manure application timing on phosphorus (P) losses in runoff from no-till corn. Treatments included conventional corn grain (G) and silage (SL; 10- to 15-cm cutting height) and nonconventional, high-cut (60-65 cm) silage (SH) subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm h(-1); 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots was collected, and subsamples were analyzed for dissolved reactive phosphorus (DRP), total phosphorus (TP), and P mass distribution in four particle size classes. Total P and DRP loads were inversely related to percent residue cover, but both TP and DRP concentrations were unaffected by residue level. Manure application increased DRP concentrations in spring runoff by two to five times but did not significantly affect DRP loads, since higher concentrations were offset by lower runoff volumes. Spring manure application reduced TP loads in spring runoff by 77 to 90% compared with plots receiving no manure, with the extent of reductions being greatest at the lower residue levels (<24%). The TP concentration in sediments increased as particle size decreased. Manure application increased the TP concentration of the 0- to 2-microm fraction by 79 to 125%, but elevated the 2- to 10- and 10- to 50-microm fractions to a lesser extent. Recent manure additions were most influential in enriching transported sediments with P. By itself, higher residue cover achieved by high-cutting silage was often insufficient to lower P losses; however, the combination of manure application and higher residue levels significantly reduced P losses from corn fields harvested for silage.  相似文献   

20.
ABSTRACT: The persistence of water quality problems has directed attention towards the reduction of agricultural nonpoint sources of phosphorus (P) and nitrogen (N). We assessed the practical impact of three management scenarios to reduce P and N losses from a mixed land use watershed in central Pennsylvania, USA. Using Scenario 1 (an agronomic soil P threshold of 100 mg Mehlich‐3 P kg‐1, above which no crop response is expected), 81 percent of our watershed would receive no P as fertilizer or manure. Under Scenario 2 (an environmental soil P threshold of 195 mg Mehlich‐3 P kg‐1, above which the loss of P in surface runoff and subsurface drainage increases greatly), restricts future P inputs in only 51 percent of the watershed. Finally, using scenario 3 (P and N indices that account for likely source and transport risks), 25 percent of the watershed was at high risk or greater of P loss, while 60 percent of the watershed was classified as of high risk of nitrate (NO3) leaching. Areas at risk of P loss were near the stream channel, while areas at risk of NO3 leaching were near the boundaries of the watershed, where freely draining soils and high manure and fertilizer N applications coincide. Remedial measures to minimize P export should focus on critical source areas, while remedial measures to reduce N losses should be source based, concentrating on more efficient use of N by crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号