首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
结合实验室声发射仪和油气管道设备,建立了充气管道泄漏声发射检测系统模型,分别在传感器间距、管道压力和泄漏量三种变化状态下进行了泄漏源定位影响实验。对管道泄漏声发射信号的时域统计特征、频域分布特征以及泄漏信号的相关性作了分析;从声信号能量累计和衰减特性方面对互相关定位法和幅度衰减测量区域定位法的可行性进行了计算,表明在传感器间距较小和泄漏量较小的状态下,在背景噪声较小的环境中,用互相关法具有较好的定位精度;而幅度衰减测量区域定位方法对泄漏源的定位误差较大。  相似文献   

2.
为减小压力管道泄漏定位误差,从而及时处理管道泄漏,预防事故,首先,提出一种基于变分模态分解(VMD)分量相对熵分析的管道泄漏定位方法,采用VMD分解泄漏信号,获得多个分量,用相对熵分析自适应选择方法去除与管道泄漏信号混合的非泄漏信号,获取最佳观测信号;然后,利用管道模态声发射理论与广义S变换互时频分析,减少泄漏声发射信号频散性对定位的影响,获取较准确的泄漏信号的时延与声速;最后,利用管道泄漏时差定位公式计算泄漏位置,实现管道泄漏的精确定位。结果表明:该方法能够实现管道泄漏精确定位,与直接互时频分析方法以及相关系数分析法相比,定位精度明显提高。  相似文献   

3.
声发射法检测管道泄漏是目前的热点方法,研究涉及泄漏信号的产生与传播、信号拾取与处理、基于信号的智能识别与定位等。通过介绍声发射检测定位原理及一些基本规律,详细分析小波分析、局域均值分解、经验模态分解、变分模态分解在处理泄漏信号时的优劣,探讨人工智能在处理管道泄漏声发射信号中的应用,总结管道泄漏的模态研究、相关试验研究,来理清基于声发射的管道泄漏检测现状及展望未来发展。  相似文献   

4.
为降低城市管道泄漏定位误差,提出1种改进的集合经验模态分解(IEEMD)样本熵分析的管道多点泄漏定位方法。首先通过在EEMD中添加自相关函数计算和EMD算法,得到IEEMD;然后应用IEEMD可将原始泄漏信号直接去噪并分解为真实信号分量和冗余分量,经样本熵分析计算剔除冗余分量,获得有效泄漏信号;最后根据互相关时延计算和声发射时差定位法精确计算泄漏点位置。结果表明:该方法泄漏信号提取效果好、计算效率更高,有效提高了信号的信噪比,降低了信号的均方误差;该方法将管道泄漏定位误差降低至4.06%,较大程度提高了管道泄漏定位精确度。  相似文献   

5.
针对输气压力管道泄漏声发射信号由于含有大量噪声而特征难以提取的问题,文章提出一种基于MCKD(最大相关鞘度解卷积)和EMD分解相结合的管道泄漏声发射信号提取方法。首先根据MCKD对泄漏信号进行降噪,突出信号中的有效成分,然后进行EMD分解得到含有泄漏特征的敏感IMF分量,并进行EMD重构并提取泄漏源声发射信号的本质特征,提高管道定位精度。实验表明,该方法能够很好地滤除信号中的噪声并且准确地提取含噪声信号中的时频特征,是对压力管道泄漏声发射信号降噪的一种新方法。  相似文献   

6.
为解决常压储罐泄漏检测中容易出现的信号漏采、定位不精准等问题,基于声发射泄漏检测要求,提出一种适用于储罐底板泄漏检测的液位多级变化工况下声发射检测及验证方法,并规定具体的工艺流程。以某石化公司储罐为例,分析不同液位时采集得到的声发射信号特征,同时利用声发射技术对储罐底板泄漏进行区域定位,并采用开罐检测方法进行验证,发现随着液位的增加,信号活性先增大后减小,储罐底板泄漏声发射检测结果与开罐检测高度一致。研究结果表明:在多级液位下采集储罐底板泄漏声发射信号,可提高泄漏源定位精度,有效避免漏检情况发生。  相似文献   

7.
应用Matlab小波变换对燃气管道泄漏信号进行消噪处理,得到了更为精确的泄漏定位结果。首先阐述了小波变换的原理和步骤,通过实验室模拟油气管道进行燃气管道泄漏模拟试验,运用matlab小波工具箱,对不同小波基以及不同阈值处理后的几种偏差进行比较后选取db8小波基对气体管道进行7尺度分析,结合时延估计的检测定位原理得出泄漏位置坐标。结果证明小波消噪确实提高了管道泄漏的定位精度。  相似文献   

8.
本文通过在试验室条件下,对压力管道泄漏的声发射信号进行定位及特征研究,探索声发射技术在压力管道泄漏监测方面的可行性;并通过工业锅炉水压试验过程中的连接管道泄漏声发射监测案例对研究成果进行验证,从而为压力管道泄漏声发射监测积累必要的工程经验和理论数据。  相似文献   

9.
本文针对传统基于时差的声发射定位方法精度及稳定性不足且易受检测环境影响的问题,提出了一种基于收敛算法的声发射源定位方法,经过循环迭代不断优化声发射信号的到达时刻计算方式,使得定位计算重构的定位源稳定收敛在近似同一区域,从而提高声发射源的定位准确度。  相似文献   

10.
为了研究长输天然气管道泄漏检测与定位技术,将管道泄漏检测技术中常用的负压波检测原理与Lab VIEW技术相结合,设计了一套基于Lab VIEW的长输天然气管道泄漏检测与定位分析程序,利用该程序对长输天然气管道泄漏的负压波信号进行滤波和数据处理。利用小波变换的多尺度功能,提取信号的突变或瞬态特征,计算奇异点位置,达到泄漏定位的目的;选取不同类型小波进行泄漏定位误差分析,找出该工况条件下最佳的小波类型。结果表明:该程序对泄漏点的定位误差在4%以内,具有较高的精确度和可行性;在该工况下,最佳的小波类型为db5,其定位误差精确到0.034%。  相似文献   

11.
During the detection of pipeline leakages, false alarms of leak detection could be markedly reduced if the interference signals resulting from pressure regulating, pump regulating or valve movements could be accurately distinguished. A digital recognition method for interference signals and leakage signals based on a dual-sensor system is proposed in this paper. It is demonstrated that the direction of the signal can be recognized by a cross-correlation calculation between two signals from the dual-sensor, one of which undergoes forward linear interpolation and backward linear interpolation. Based on this theory, the interference signal and the leak signal can be discriminated exactly, and the distance between the two sensors in the dual-sensor system can be considerably reduced without needing to increase the sampling frequency. The monotonicity of the cross-correlation function is demonstrated, and a fast discrimination algorithm based on a binary extreme search method, which decreases the computational load and maintains global optimization, is also proposed. A pre-processing method of the actual signal is proposed to decrease the identity requirement for the two sensors in a dual-sensor system. In the experiment based on artificial signals, the proposed discrimination algorithm could achieve accurate recognition of the abnormal signal, and as such, the theory and application of pipeline leak detection based on dual-sensor systems are extended.  相似文献   

12.
为减小压力容器气体泄漏实时位置估算误差,准确监测容器工况,首先,从声学监测角度提出一种引入鲸鱼优化算法(WOA)的泄漏源估计方法,采用波达方向(DOA)估计法预测气体泄漏位置方向,获得泄漏源角坐标;然后,引入WOA自适应选择方法分解DOA的特征值,多次迭代得到最精确的泄漏位置;最后,以某化工厂中压力容器数据为实际算例,...  相似文献   

13.
In order to study a new leak detection and location method for oil and natural gas pipelines based on acoustic waves, the propagation model is established and modified. Firstly, the propagation law in theory is obtained by analyzing the damping impact factors which cause the attenuation. Then, the dominant-energy frequency bands of leakage acoustic waves are obtained through experiments by wavelet transform analysis. Thirdly, the actual propagation model is modified by the correction factor based on the dominant-energy frequency bands. Then a new leak detection and location method is proposed based on the propagation law which is validated by the experiments for oil pipelines. Finally, the conclusions and the method are applied to the gas pipelines in experiments. The results indicate: the modified propagation model can be established by the experimental method; the new leak location method is effective and can be applied to both oil and gas pipelines and it has advantages over the traditional location method based on the velocity and the time difference. Conclusions can be drawn that the new leak detection and location method can effectively and accurately detect and locate the leakages in oil and natural gas pipelines.  相似文献   

14.
The leakage of oil/gas pipelines is one of the major factors to influence the safe operation of pipelines. So it is significant to detect and locate the exact pipeline leakage. A novel leak location method based on characteristic entropy is proposed to extract the input feature vectors. In this approach, the combination of wavelet packet and information entropy is called “wavelet packet characteristic entropy” (WP-CE). The combination of empirical mode decomposition and information entropy is called “empirical mode decomposition characteristic entropy” (EMD-CE). Both pressure signal and flow signal of low noise and high noise of pipeline leakage are decomposed to extract the characteristic entropy. The location of pipeline leak is determined by the combination of the characteristic entropy as the input vector and particle swarm optimization and support vector machine method (PSO-SVM). The results of proposed leak location method are compared with those of PSO-SVM based on physical parameters. Under the condition of high noise, the results of proposed leak location method are better than those of PSO-SVM based on physical parameters.  相似文献   

15.
Leaks in pipelines can cause major incidents resulting in both human injuries and financial losses. Among the considerable leak detection and location methods, the Negative Pressure Wave (NPW) based method has been widely used in locating leaks in liquid pipelines. The NPW based method only monitors the pressure changes at two ends of a pipeline. But the pressure is apt to be fixed by the end equipment and the change of it induced by a small or slow leakage is too small to be detected, which limit the application of the NPW based method in these situations. This paper presents a novel leak location method based on integrated signal, which is a combination of the pressure and flow rate signals. The representation of the integrated signal is derived from the transient analysis of the leakage. For the change of the integrated signal induced by a leakage is larger than the pressure change and it is also unaffected by the end equipment, the proposed method can be used to detect and locate small or slow leakage in a pipeline and can also be used in pipelines which end pressures are fixed by some kinds of equipment. The validation of the proposed method also confirms its advantages.  相似文献   

16.
Negative-wave-based leakage detection and localization technology has been widely used in the pipeline system to diminish leak loss and enhance environmental protection from hazardous leak events. However, the fluid mechanics behind the negative wave method has yet been disclosed. The objective of this paper is to investigate the generation and propagation of negative wave in high-pressure pipeline leakage. A three-dimensional computational fluid dynamic (CFD) study on the negative wave was carried out with large eddy simulation (LES) method. Experimentally validated simulation presented the transient wave generation at the leak onset and the comprehensive wave evolution afterwards. Negative wave was proven to be a kind of rarefaction acoustic waves induced by transient mass loss at the onset of leakage. Diffusion due to the density difference at wave fronts drives the negative wave propagation. Propagation of negative wave can be categorized into three states – semi-spherical wave, wave superposition and plane wave, based on different wave forms. The wave characteristics at different states were elucidated and the attenuation effects were discussed respectively. Finally, a non-dimensional correlation was proposed to predict the negative wave amplitude based on pipeline pressure and leak diameter.  相似文献   

17.
将物料平衡统计模型、信号序列相关分析模型和管道机理模型进行耦合,实现了管道泄漏事故的检测、空间定位和泄漏量估算.多模型耦合的方法降低了利用单一模型进行检测的漏检风险.将模型与GIS紧密集成,实现了泄漏信息的直观显示,可有效提高化工管道泄漏事故的应急反应效率.  相似文献   

18.
To solve the problems of the difficulty in early leakage monitoring and larger positioning error for urban hazardous chemicals pipelines, the optimized method based on the improved Inverse Transient Analysis (ITA) and Ant Lion Optimizer (ALO) was proposed. Firstly, based on the obtained experiment's results of leakage of natural gas in the non-metallic pipeline, the segment classification method was incorporated into the pressure gradient calculation. The modified method can adapt to the multi-node characteristics of urban pipe networks and help to obtain the preliminary positioning calculation results after optimization. Then the calculation results were embedded in the ITA calculation model. The input parameters of the gas pipeline such as boundary conditions, leakage rate and friction coefficient were used to establish the characteristic linear equations. Then the objective function of the least-squares criterion was defined, and the improved ITA model suitable for leakage detection of urban natural gas pipeline networks was constructed. Finally, the ALO was used to optimize the calculation process of the improved ITA model, and iteratively optimize the optimal friction coefficient and its corresponding minimum objective function (OF) value. As a result, a more precise location of the leakage source was calculated. The validation of the modified method is conducted by comparing the calculated values with the experiment's results. The results show that the method can accurately predict the location where the pipeline leakage occurs. The minimum error is 3.17%. Compared with the traditional ITA, this method not only accelerates the convergence speed of the objective function, but also improves the accuracy of location calculation.  相似文献   

19.
Pipeline faults like leakage and blockage always create problem for engineers. Detection of exact fault quantity and its location is necessary for smooth functioning of a plant or industry and safety of the environment. In this paper brief discussion is made on various pipeline fault detection methods viz. Vibration analysis, Pulse echo methodology, Acoustic techniques, Negative pressure wave based leak detection system, Support Vector Machine (SVM) based pipeline leakage detection, Interferometric fibre sensor based leak detection, Filter Diagonalization Method (FDM), etc. In this paper merit and demerits of all methods are discussed. It is found that these methods have been applied for specific fluids like oil, gas and water, for different layout patterns like straight and zigzag, for various lengths of pipeline like short and long and also depending on various operating conditions. Therefore, a comparison among all methods has been done based on their applicability. Among all fault detection methods, Acoustic reflectometry is found most suitable because of its proficiency to identify blockages and leakage in pipe as small as 1% of its diameter. Moreover this method is economical and applicable for straight, zigzag and long, short length pipes for low, medium and high density fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号