首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤中多环芳烃微生物降解能力模拟   总被引:1,自引:1,他引:1       下载免费PDF全文
为了揭示微生物菌种(组合)对土壤中PAHs(多环芳烃)降解率的影响以及不同类型PAHs抗微生物降解能力的差异,分析了北京市6个不同环境功能区土壤中微生物种类及其分布特征,从中筛选出部分微生物菌种对典型PAHs和原油进行降解模拟试验,对比分析微生物对不同PAHs降解能力的差异.结果表明:① 不同菌种组合对PAHs的降解能力存在明显差异,与假单胞菌属、无色杆菌、短稳杆菌混合菌相比,假单胞菌属、无色杆菌、短稳杆菌和微杆菌混合菌对PAHs的降解率高0.6%~4.5%;② 在相同降解条件下,不同PAHs的降解率存在明显差异,在单体培养基中,LMW PAHs(低环数PAHs)的降解率在25.3%以上,而HMW PAHs(高环数PAHs)的降解率都小于20.1%;③ 在单体培养基与混合培养基中PAHs的降解能力也存在一定差别,单体培养基中PAHs的降解率较混合培养基中高4.2%~26.6%;④ 无论在单体培养基中,还是混合培养基中这些化合物的降解率均存在随着降解时间的增加而增大的现象;⑤ 在原油培养基中不同PAHs的降解率更为复杂,并且出现了中低分子量PAHs降解率随降解时间增加反而降低的假象,这可能是由于随着时间增加,微生物对PAHs的降解能力加强,原油中含烷基的PAHs基团降解或HMW PAHs被微生物降解产生LMW PAHs中间产物造成.研究显示,假单胞菌属、无色杆菌、短稳杆菌和微杆菌对HMW PAHs和LMW PAHs均有明显的降解效果,但不同PAHs的降解率存在明显的差异,即使是同一单体化合物,在单体培养基、混合培养基和原油培养基三种不同的降解条件下,其降解率也具有不同程度的差别.   相似文献   

2.
温度对土壤中多环芳烃消散速率的影响   总被引:1,自引:0,他引:1  
本文在实验室中对四种多环芳烃(芴,蒽,芘)作为纯化物混合加入两种不同土壤(细土和砂土)时温度对其消散速率的影响进行了180多天的研究,从温度从10℃增至25℃时促使这四种芳烃在两种土壤中的减少,温度对多环芳烃消失速率的影响取决于化合物和土壤的理化性质,在一定的土壤条件下,实验室试验所得到的这种低温条件下具有较长半衰期的结果,说明高分子量的多环芳烃具有较高的持留性。  相似文献   

3.
本文在实验室中对种多环芳烃(芴、蒽、芘和(?))做为纯化合物混合加入两种不同土壤(细土和砂土)时温度对其消散速率的影响进行了180多天的研究。当温度从10℃增至25℃时促使这四种芳烃在两种土壤中的减少。温度对多环芳烃消失速串的影响取决于化合物和土壤的理化性质。在一定的土壤条件下,实验室试验所得到的这种低温条件下具有较长半衰期的结果,说明高分子量的多环芳烃具有较高的持留性。  相似文献   

4.
底泥中多环芳烃的微生物降解与原位修复技术   总被引:3,自引:0,他引:3  
水体底泥是多环芳烃(PAHs)重要的环境载体之一,PAHs通过多种途径进入各种水体,经过复杂的过程沉积富集于水体底泥中。PAHs在环境中的迁移转化有多种途径,其中微生物降解是去除环境中PAHs的最主要途径。PAHs可以作为微生物的唯一碳源或通过共代谢而被降解。影响微生物降解PAHs的因素有:PAHs的生物可利用性、温度、pH值、供氧条件、营养条件以及其它的环境因素。受PAHs污染底泥的微生物原位修复技术通过导入高效微生物,提供电子受体、营养盐和表面活性剂等来降解底泥中的PAHs。该技术被认为是去除底泥中PAHs污染物的重要手段,但还存在着多方面的缺点而使其应用存在着很大的局限性,需要从高分子量的PAHs的降解机理、生物降解过程中基因调控机制、环境因子与微生物降解PAHs的相互作用关系以及受PAHs污染底泥的微生物原位修复过程的监测、风险评估和效果评估等多个方面进行深入的研究。  相似文献   

5.
焦化厂多环芳烃污染土壤的强化微生物修复研究   总被引:8,自引:2,他引:8  
从北京焦化厂采集了多个多环芳烃(PAHs)污染土壤样品,目的是从中分离出PAHs降解菌并确定其适宜的生存条件,进行富集培养后,应用于焦化厂污染土壤的强化微生物修复.分别以美国EPA优先控制的16种PAHs中的一种为唯一碳源,采用平板划线法对降解菌进行分离并通过基因分析方法确定其种属,共获得7种PAHs降解菌,这些菌混合在一起,在适当的浓度条件下,可对16种2~6环的PAHs进行降解.在液体培养基中16种PAHs总浓度(ΣPAH16)为17μg/mL时,单一菌即可生长良好且具有降解活性,但当ΣPAH16为166μg/mL时,不论是单一菌还是混合菌(7种PAHs降解菌),其生长和活性均受到抑制.针对北京焦化厂污染土壤,设计了5组处理,即对照(C)、添加营养物(N)、添加营养物和降解菌(N+B)、添加营养物和表面活性剂(N+S)、以及添加营养物、降解菌和表面活性剂(N+B+S).经过5周的实验,与C组相比,N+B组16种PAHs的去除率平均提高了32%,N+B+S组16种PAHs的去除率平均提高了46%(其中10种4~6环PAHs的去除率平均提高了52%).添加PAHs降解菌和表面活性剂可明显增强土壤中PAHs的降...  相似文献   

6.
电子受体作为微生物代谢过程中的必需物质,对不同类型微生物的数量及其代谢能力有重要影响。笔者分析了不同电子受体对微生物降解多环芳烃的影响。对好氧降解(氧气为电子受体)菌种类及降解途径进行了总结;厌氧降解方面,概述了硝酸盐、硫酸盐、金属离子(Fe(Ⅲ)或Mn(Ⅳ))、碳酸盐为电子受体的研究进展。此外,对微生物降解多环芳烃的研究存在的问题以及未来的发展方向进行了简述与展望。  相似文献   

7.
土壤中多环芳烃(PAHs)的化学氧化与微生物联合降解备受关注,但已有的研究主要集中在化学氧化与好氧微生物联用方面,与缺氧微生物联用研究较少。通过对过氧化氢氧化后的土壤进行接种和缺氧培养,考察化学氧化后深层土壤中PAHs缺氧微生物降解的可行性。结果表明:过氧化氢氧化后,16种PAHs降解了33.3%~95.9%,但土壤中细菌数量也明显减少,细菌数量的基因拷贝数减少了3.5个数量级;缺氧培养180 d后,添加营养盐可使微生物数量明显恢复,在同时添加营养盐和电子受体(硫酸盐)时微生物数量恢复程度更高;单独添加营养盐或电子受体不能明显促进PAHs降解,同时添加营养盐和电子受体能够促进PAHs降解,且同时添加营养盐和电子受体时,接种土壤中3环和部分4环PAHs(荧蒽和芘)的降解率显著高于未接种土壤。总体上,缺氧微生物降解可使PAHs去除率在化学氧化的基础上提高15%左右。  相似文献   

8.
9.
多环芳烃的微生物降解与生物修复   总被引:63,自引:5,他引:63  
生物修复在治理多环芳烃污染环境中的作用日益突出,其应用越来越受到重视。文中概述了生物修复技术发展的基础-多环芳烃微生物降解,论述了降解微生物分离、驯化、咱类、降解机制等,探讨了提高多环芳烃降解速率的途径及其存在的一些问题,并对今后的发展进行了展望。  相似文献   

10.
刘魏魏  尹睿  林先贵  张晶  陈效民  李烜桢  杨婷 《环境科学》2010,31(4):10179-1084
在温室盆栽条件下,通过单独或联合添加生物表面活性剂鼠李糖脂(RH)和接种多环芳烃专性降解菌(DB),研究了利用生物表面活性剂-微生物强化紫花苜蓿(Medicago sativa L.)修复多环芳烃(PAHs)长期污染土壤的效果.结果表明,添加鼠李糖脂和接种PAHs专性降解菌能促进紫花苜蓿的生长和土壤中PAHs的降解.培养90d后,RH、DB处理的PAHs的降解率分别为30.0%和49.6%,均高于对照处理(CK)(21.7%).RH+DB处理PAHs的降解率最高达53.9%,说明鼠李糖脂和PAHs专性降解菌协同作用显著.另外,随着PAHs苯环数的增加,其平均降解率逐渐降低,但是接种PAHs专性降解菌能够提高4环和5环PAHs的降解率.同时也发现土壤中脱氢酶活性和PAHs降解菌数量越高的处理,土壤PAHs的降解率也越高.所以添加鼠李糖脂和接种PAHs专性降解菌能够有效促进土壤多环芳烃降解.  相似文献   

11.
韩含  王潇  殷梦秋子  张其武  何晓曼 《环境工程》2022,40(2):100-105+112
利用机械力化学法修复多环芳烃污染土壤,以四环芳烃芘为代表污染物,研究了球磨时间和球磨转速对土壤中芘去除率的影响。当球磨时间为6 h,球磨速度为500 r/min时,土壤中芘去除率为93.78%。利用SiO2作为模拟土壤,通过对球磨前后模拟土壤的GC-MS、红外光谱和拉曼光谱分析,探索芘的降解途径和机理。机械力化学修复过程中,芘的苯环被破坏,部分中间产物为环数较少的多环芳烃(PAHs)、碳链较短的烷烃,还有部分被碳化成石墨和不定形碳。利用机械力化学法对实际污染土壤进行修复,修复后土壤中芘和荧蒽浓度分别为21.45,35.68 mg/kg。机械力化学法修复多环芳烃污染土壤具有可行性和广泛的应用前景。  相似文献   

12.
表面活性剂对白腐真菌降解多环芳烃的影响   总被引:13,自引:0,他引:13  
陈静  王学军  胡俊栋  陶澍 《环境科学》2006,27(1):154-159
研究了4种表面活性剂吐温80(Tween80)、曲拉通100(Trition X-100)、十二烷基苯磺酸钠(LAS)、十二烷基硫酸钠(SDS)对白腐真菌降解水溶液和土水系统中多环芳烃(PAHs)的影响.结果表明,表面活性剂的类型、浓度、PAHs的赋存状态以及体系pH值、温度等均影响着PAHs的降解.在水溶液中(无土),加入4种表面活性剂均降低溶液中PAHs的降解.在土水系统中,Trition X-100和SDS抑制PAHs降解,而Tween80和LAS对PAHs的影响则受到浓度的影响.低浓度Tween80和LAS对土壤中PAHs的降解没有促进作用,甚至有微弱的抑制作用,但适当浓度的Tween80和LAS促进PAHs降解,并且对土壤中PAHs降解的促进作用随着浓度的增大而逐渐增大,但过高浓度的Tween80和LAS没有表现出对PAHs降解更大的促进作用.  相似文献   

13.
高分子量多环芳烃(high molecular weight polycyclic aromatic hydrocarbons,HMW-PAHs)属于持久性污染物,与低分子量多环芳烃(low molecular weight polycyclic aromatic hydrocarbons,LMW-PAHs)相比更难被降解.微生物修复是解决HMW-PAHs污染问题的有效手段.该文以2种典型HMW-PAHs——芘和苯并[a]芘为例,对影响其微生物降解效率的因素、提高降解率的强化手段和主要降解途径进行阐释,深入剖析微生物的降解调控机制,并对未来的研究和发展提出了展望,以期为微生物降解HMW-PAHs的相关研究提供参考.结果表明:①大多数微生物在中温、中性条件下对HMW-PAHs具有较好的降解性能,不同多环芳烃在降解过程中存在相互作用;②就HMW-PAHs的微生物强化降解手段而言,表面活性剂吐温80对降解的促进作用较为明显,生物炭是较为优良的固定化材料,在受体菌株中表达降解基因以构建基因工程菌是促进HMW-PAHs微生物降解的有效方式;③芘和苯并[a]芘主要通过K区氧化和LMW-PAHs途径降解;④由双加氧酶催化的羟基化是HMW-PAHs降解过程中的重要步骤;⑤多环芳烃的初始氧化过程也涉及细胞色素P450单加氧酶的活性.目前,基因工程菌的长效稳定性是限制相关技术广泛应用的瓶颈问题,未来需要综合多组学数据从基因、转录、蛋白和代谢水平对HMW-PAHs的微生物降解机制进行全面、深入地解析,为构建高效稳定的重组菌株提供理论支撑.   相似文献   

14.

多环芳烃(PAHs)在环境中分布广泛,且具有生态和环境毒理效应,因此对PAHs污染场地的治理和修复备受关注。生物降解是去除PAHs的重要技术之一,但存在降解效率低、周期长等局限性。归纳了PAHs常见降解菌及其主要降解机制,探讨了PAHs降解菌在实际污染场地应用的研究进展与不足。结果表明:PAHs降解菌株主要包括不动杆菌属(Acinetobacter)、分枝杆菌属(Mycobacterium)和假单胞菌属(Pseudomonas),白腐真菌是常见的降解菌;相比单一菌株,复合菌群对PAHs的降解能力更强。在降解菌株降解基因(如nah基因簇)编码酶的作用下,萘、菲和芘等PAHs发生开环并逐步氧化,最终通过水杨酸或邻苯二甲酸途径进入三羧酸循环实现完全降解;而苯并[a]芘降解过程中会产生包括醇、醛、酸类中间产物,其完全降解机理仍有待研究。目前大部分针对PAHs降解菌的研究局限于实验室条件,缺少实际PAHs污染场地降解性能的验证;实际应用中,降解菌活性和PAHs的去除受温度、pH、氧气浓度和土壤有机质含量等环境因子的影响。PAHs降解菌的应用实例包括采用生物刺激和(或)生物强化的方式以促进PAHs污染场地的修复。然而,生物降解在实际应用中仍需克服降解菌失活、技术耦合困难、环境风险和成本高等限制因素。未来研究主要包括复合污染和土著菌共存条件下PAHs生物降解机制研究、降解菌生理特性调控和新型强化材料的开发;此外,应加强降解菌在实际污染场地应用的推广,以实现对PAHs污染的高效、经济、可持续治理。

  相似文献   

15.
青顶拟多孔菌对单一和复合多环芳烃的降解特性   总被引:3,自引:0,他引:3       下载免费PDF全文
利用中国东北林区普遍存在白腐菌——青顶拟多孔菌,降解单一和复合多环芳烃,分别测定了菲、蒽、芘于11,22,33d的累积降解率.结果显示,对于单一多环芳烃,该菌种降解能力由强到弱依次为菲>蒽>芘,33d累积降解率依次为96.56%、94.76%和57.53%;对复合多环芳烃降解中,菲和芘的累积降解率分别为99.46%和61.09%.在复合多环芳烃的降解研究中发现,少量蒽的加入,刺激了菌种对菲和芘的降解,使菲和芘的降解率分别提高了2.9%和3.56%.由此提示,在研究降解高环、难降解多环芳烃时,可利用低环多环芳烃对菌种的刺激作用,在体系内形成高、低环多环芳烃的共代谢,以达到更加高效降解多环芳烃的目的.  相似文献   

16.
过硫酸钠是污染土壤化学氧化修复技术中应用较为广泛的氧化剂.为研究过硫酸钠对不同土壤中PAHs(polycyclic aromatic hydrocarbons,多环芳烃)的修复效果,以我国多种典型土壤(黑土、潮土、黄土、紫色土、褐土、砖红壤)为试验样本,以萘、菲、蒽、芘、苯并[a]芘5种PAHs为目标污染物,分析活化过硫酸钠对人为老化的降解率;此外,通过对氧化前后土壤pH、w(有机碳)等土壤性质变化的比较和分析,探讨氧化修复过程对土壤性质的影响.结果表明:当活化过硫酸钠用量为0.8 mmol/g、温度为25℃时,PAHs污染土壤中萘、菲、蒽、芘、苯并[a]芘的降解率最高,分别为87.82%、79.68%、87.93%、83.40%、94.31%.随着温度的升高,PAHs降解率逐渐升高,当温度达到25℃时,PAHs的降解率(85.69%)达到最高,随后随着温度的继续升高,总PAHs的降解率没有明显增加;随着pH的升高,PAHs的降解率逐渐升高,当pH达到6~7时,PAHs降解率维持在一个较高水平;随后随着pH的继续升高,总PAHs的降解率逐渐降低.随着温度以及pH的变化,5种PAHs的降解率与总PAHs的降解率变化趋势一致. w(有机碳)越低,PAHs环数越高,PAHs降解率越高;高环(5~6环)、中环(4环)、低环(2~3环)PAHs降解率与总PAHs降解率变化趋势一致.此外,过硫酸钠氧化修复后土壤结构遭到一定程度的破坏,土壤的pH、w(有机碳)和土壤肥力会有不同程度的下降,对土壤的再次利用有较大影响.研究显示,过硫酸钠可有效氧化降解不同性质土壤中PAHs,在氧化修复PAHs污染土壤方面具有较好的应用前景.   相似文献   

17.
海岸带水环境中多环芳烃的归宿研究   总被引:9,自引:2,他引:9  
在分析了海岸带水环境中多环芳烃的来源,分布的基础上,对其行为归宿也进行了论述。该憎水性有机污染物的行为受控于一系列物理,化学及生物过程。其中最重要的是物理迁移,化学及生物转化,还有在不同环境界面(大气,水,沉积物及生物)中的分布。同时也分析了控制PAHs在海岸带水环境中归宿的主要生物化学过程,这些过程包括挥发,沉积物-水中的分配,与可溶性有机物的作用,生物累积和降解。  相似文献   

18.
19.
微生物对土壤与沉积物吸附多环芳烃的影响   总被引:8,自引:0,他引:8  
以枯草芽孢杆菌为接种微生物,研究微生物对沉积物和湿地土壤吸附多环芳烃(PAHs)菲、苯并[a]芘过程的影响.结果表明,枯草芽孢杆菌对菲与苯并[a]芘都可进行吸附或生物降解,48h液相PAHs浓度达到平衡时,微生物对菲消除了98%,对苯并[a]芘消除85%;接种的样品48h吸附等温线均呈线形,能较好地符合线性方程;在接种微生物情况下,沉积物与土壤对菲和苯并[a]芘吸附特征均发生较大变化,对菲的吸附量增大约35倍,而对苯并[a]芘的吸附量却降低了2/3左右;未接种微生物的土壤和沉积物对菲解吸率为20%,接种的样品组为2.9%,而对苯并[a]芘的解吸结果与菲相反,未接种的对照组为4%,接种的样品组为13%.微生物在土壤与沉积物吸附PAHs的过程中起主导作用.  相似文献   

20.
为探讨化学吸附和生物降解协同作用去除污染水体中的多环芳烃,文章以生物炭为固定化载体,通过吸附解脂耶氏酵母菌(Yarrowia lipolytica Tzyx3)形成了生物炭菌剂,并采用吸附及降解试验对水体中的萘、菲、芘去除效率进行研究。结果表明,生物炭菌剂处理去除水体中萘、菲、芘的效率显著高于生物炭吸附及游离态菌株降解,生物炭菌剂对水中萘、菲、芘的总体去除率为88.4%、79.0%和68.7%。温度和pH值对生物炭菌剂的吸附-降解影响较明显,在温度为30~35℃、pH值为7.0~8.0范围内获得较好的去除效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号