首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硫酸盐还原菌介导的吸附态砷的迁移转化   总被引:1,自引:0,他引:1  
自然界中砷(As)主要被吸附在铁氧矿物上,吸附态砷从铁氧矿物释放至水体是水中砷污染的主要来源.在此过程中,微生物起着至关重要的作用.本研究的目的是探究加入硫酸盐还原菌Desulfovibrio vulgaris DP4对吸附态砷迁移转化的影响.结果表明,0 h两体系砷释放量均为0μmol·L~(-1).与对照组相比,前84 h DP4促进了吸附态五价砷[As(Ⅴ)]的脱附,在13 h砷的释放量达到最大值12.6μmol·L~(-1),占初始总吸附量(16μmol·L~(-1))的79%,是对照组(1.5μmol·L~(-1))的8.4倍.而在84 h之后,DP4体系的砷浓度低于非生物对照组,表明溶解态砷被再次固定.此过程中,砷的释放量与氧化还原电位(Eh)显著相关(P=0.001).XRD结果表明,在DP4作用下针铁矿的结晶度降低了50%,且结晶度越低,吸附能力越强,这可能是后期砷被再次固定的原因之一.同时SEM-EDS表明DP4使得针铁矿发生团聚,部分被转化为硫铁矿.As的XANES结果表明固相中没有硫化砷生成,这进一步证明固相中生成的主要是硫铁矿,它对砷的再吸附导致了后期DP4体系中溶解态砷的浓度低于非生物对照组.此外,在固相中检测出了19%的As(Ⅲ),而液相中并未检测出溶解态的As(Ⅲ),据此推测硫酸盐还原菌原位还原了吸附态As(Ⅴ).  相似文献   

2.
张林  卢金锁 《环境科学》2017,38(9):3937-3943
砷(As)、锑(Sb)污染是世界范围内比较严重的环境问题,且经常同时存在.微生物在As、Sb的氧化还原和迁移转化的过程中起着至关重要的作用.As和Sb作为同族元素,具有类似的化学性质和相关的微生物氧化还原机制.然而,砷还原菌株对As、Sb迁移转化机制的研究相对较少,特别是在As、Sb共存的土壤中.本研究的目的是探究含有ars C基因的砷还原菌株Pantoea sp.IMH对土壤中As、Sb的氧化还原和迁移转化.除了接种活细胞的活菌体系和非生物对照组,同时,考虑到自然界中细菌死亡裂解过程,还做了失活死细胞的死菌体系.结果表明,在活菌体系中,溶解态As(Ⅴ)有72.7μg·L~(-1)转化为As(Ⅲ),364.8μg·L~(-1)的溶解态的Sb(Ⅴ)没有还原,表明ars C介导的砷还原菌不能还原Sb(Ⅴ).在死菌体系中,总砷和总锑的含量分别为506.8μg·L~(-1)、821.1μg·L~(-1),是活菌体系(As=155.2μg·L~(-1);Sb=364.8μg·L~(-1))和非生物对照组中(As=57.6μg·L~(-1);Sb=271.1μg·L~(-1))砷锑含量的4倍左右.这可能是死菌体释放的胞内物质促进了砷锑的释放,3个体系中总砷和总锑释放量均显著性相关(P0.05).本研究进一步阐释了微生物对土壤中As和Sb迁移转化的影响.  相似文献   

3.
滤池被广泛运用于饮用水厂中,前期研究发现某水厂生物滤池处理含砷地下水时,一方面三价砷可被生物氧化锰氧化为五价砷,另一方面滤池系统中存在的微生物砷还原酶可促使五价砷还原为三价砷,而滤池表面存在的这种微生物竞争关系会影响滤池的稳定性及处理效率.为探讨其内在机制,本研究选取1株锰氧化模式菌(Pseudomonas sp.QJX-1)和1株砷还原模式菌(Brevibacterium sp.LSJ-9),考察在Mn2+、As(As3+、As5+)共存时,两菌株对空间、营养物质以及对砷氧化/还原的竞争关系.结果表明,不同的反应时间,Mn、As质量浓度/价态不同,三价及五价砷体系中,Pseudomonas sp.QJX-1生成的锰氧化物在砷的氧化还原反应中占主导地位,即能迅速氧化本身存在的As3+(三价砷体系)和砷还原菌产生的As3+(五价砷体系),最终两体系中砷都主要以As5+的形式存在.PCR及RT-PCR结果表明,反应过程中锰氧化菌功能基因(cum A)抑制了砷还原酶(ars C)的表达,锰氧化菌16S rRNA表达量始终比砷还原菌高两个数量级,即锰氧化菌在生长竞争过程中占优势.实验结果表明滤池的水力停留时间是决定出水中砷价态的一个重要因素.  相似文献   

4.
江汉平原地下水中氮素与砷迁移富集的相关性研究   总被引:1,自引:0,他引:1  
通过采集江汉平原潜江和监利两个典型地区的77个地下水样品进行分析测试,对该地区高砷地下水的水化学成分以及地下水中硝酸盐、氨氮与砷之间的相关关系进行了分析,并研究了硝酸盐、氨氮控制的氧化还原环境对地下水中砷(As)迁移富集的影响。结果表明:江汉平原地区地下水水化学类型主要为HCO3-Ca·Mg型,地下水中低Eh值,低含量DO、NO-3、SO2-4和高含量的NH+4、S2-表明地下水为强还原环境;地下水中不同形态的氮对砷的迁移富集具有重要的控制性作用,当地下水中的NO-3含量较高时,地下水处于氧化环境,此时吸附在铁锰氧化物表面或与铁锰氧化物结合的砷不能释放到地下水中,从而呈现出地下水中砷含量随NO-3含量的增加而减少的趋势;地下水中砷含量与NH+4/NT比值具有良好的正相关关系,当地下水中NH+4/NT比值逐渐增高时,表明地下水处于还原环境,此时铁锰氧化物和氢氧化物发生还原性溶解,并释放出大量的砷进入地下水中。  相似文献   

5.
生物炭的施用对土壤铁(氢)氧化物还原、砷(As)的形态转化有重要作用,极大地影响了As的环境行为.本文研究了生物炭/AQDS (蒽醌-2,6-二磺酸盐)对含As (Ⅲ)水铁矿化学还原和异化还原的影响,探索了由此产生的非生物和生物过程中Fe和As的形态转化及次生矿物的形成.结果表明,生物炭和AQDS的添加可以促进水铁矿的化学还原和As (Ⅲ)的化学氧化,AQDS促进水铁矿化学还原和As释放的能力强,生物炭促进As形态转化的能力强;生物组在添加Shewanella oneidensis MR-1后发现,生物炭和AQDS的添加可以促进Fe (Ⅱ)的生成,AQDS的添加促进Fe (Ⅱ)的生成、As形态转化和释放的能力要高于生物炭.EEM结果表明,生物炭产生的DOM可以与溶液中的物质发生氧化还原作用从而被消耗.循环伏安曲线在0.25 V处观察到一个小而宽的阳极峰(B),可能对应了As (Ⅲ)氧化为As (V).XRD结果显示AQDS处理的非生物组和生物组出现了蓝铁矿,表明AQDS可以促进次生矿物的生成.EDX-SEM结果表明,新矿物的生成有利于As的固定(BCF:0.73%相似文献   

6.
地下水砷污染的形成机制目前尚不清楚,普遍认为,微生物对吸附于铁氧化物表面的As(Ⅴ)以及基质Fe(Ⅲ)的还原是砷释放的主要原因.本研究中以富集的混合菌群为接种微生物,以不同比例(Al∶Fe为1∶0、 1∶1、 0∶1)的铁铝氢氧化物为吸附剂,考察了微生物对吸附于这些载体上的As(Ⅴ)的还原和迁移作用.结果表明,接种微生物后,3种体系表现出不同程度的As释放,溶液中释放的As基本上是As(Ⅲ).在氢氧化铁体系中,溶解态As(Ⅲ)浓度仅为60 μg/L左右,微生物还原产生的As(Ⅲ)几乎全部存在于固相中;在Al∶Fe为1∶1的铁铝氢氧化物中,溶解态As(Ⅲ)大约为1.3 mg/L;氢氧化铝体系中,该值为7.8 mg/L,约占微生物还原总As(Ⅲ)的82%.而未接种的对照组均未检测到As(Ⅲ)以及明显的As释放.本研究还考察了吸附基质铁氧化物的还原对砷迁移的影响,结果表明,砷的还原发生在铁还原之前,铁的还原并没有引起砷的明显释放.因此,根据本实验结果推断,氢氧化铁吸附的As(Ⅴ)的还原及Fe(Ⅲ)的还原很可能不是造成地下水系统中砷释放的主要原因,而吸附于铝氧化物或其它矿物表面的As(Ⅴ)的还原可能引起了砷向水相迁移.  相似文献   

7.
As在水体中的环境行为较为复杂,且潜在威胁生态健康。该文以受矿山活动影响的喀斯特地区水库为对象,在掌握水质理化特征及不同形态As、Fe空间分布的基础上,利用电子探针显微分析仪、矿物形态连续提取技术及水化学理论分析Fe在上覆水-沉积物体系中的循环过程以及对As迁移转化的影响。结果表明:在水体弱碱性、温度及氧化还原电位随深度降低的环境条件下,水库中总As平均浓度为72.94μg/L,其中颗粒态As占比74%;上层水体溶解态As向颗粒态转化,浓度随深度降低,颗粒态As浓度则呈相反趋势;在沉降作用下颗粒态As富集于下层水体,溶解态As受沉积物释放影响浓度有增加趋势,但受吸附作用控制界面水浓度较低;颗粒态Fe也在下层富集,沉降入沉积物后高活性铁氧化物可被还原溶解,使界面水溶解态Fe浓度高于上覆水体,可向上输送;还原态Fe经氧化水解进一步增加下层水体颗粒态Fe含量,增强对溶解态As的吸附去除;水中As浓度受Fe循环影响较大,尤其底部受沉积物调控作用较强。该成果可为科学认识As在水库中的循环转化提供理论依据。  相似文献   

8.
含砷尾矿在生物氧化作用下会产生大量含砷(As)酸性矿山废水,从而对周围生态环境造成严重危害,亟需系统性明晰含砷尾矿生物氧化过程中As的迁移转化规律.探究含砷尾矿生物氧化行为的影响因素有利于揭示As的迁移转化规律.以高砷尾矿(As含量>20%)为研究对象,考察了不同初始pH条件(1.2~2.8)和固体浓度(2.0~10.0 g·L-1)对嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)生物氧化行为的影响.结果表明:As的生物氧化受初始pH值和固体浓度的显著影响.As的生物氧化效率随着初始pH或固体浓度的升高呈先升高后下降的趋势;在初始pH值2.0时,观察到As的浸出率(高达92.94%)比其他初始pH条件高.在固体浓度8.0 g·L-1时具有最优的As浸出率(高达93.24%).在所有初始pH和固体浓度条件下可以发现生物浸出前期As的浸出效率快速上升,而生物氧化中期维持相对稳定并在生物氧化后期出现下降趋势,这与微生物活性变化和黄钾铁矾的形成有关.XRD和SEM分析结果显示在生物氧化过程中微生物氧化释放的...  相似文献   

9.
水铁矿及其胶体对砷的吸附与吸附形态   总被引:13,自引:10,他引:3  
采用吸附实验,通过吸附动力学和吸附等温模型,研究了水铁矿及其胶体对As(Ⅲ)和As(Ⅴ)的吸附能力.在此基础上,使用连续提取和As化学形态提取技术分别对水铁矿及其胶体固相上吸附As的结合形态和化学形态进行提取分析.吸附动力学研究以及Langmuir和Freundlich两种吸附等温模型拟合结果表明,水铁矿及其胶体对As的吸附为多层吸附,且易于进行.水铁矿胶体对As(Ⅲ)和As(Ⅴ)的吸附量分别为194.8 g·kg~(-1)和107.3 g·kg~(-1),而水铁矿对As(Ⅲ)和As(Ⅴ)的吸附能力分别为155.2 g·kg~(-1)和104.4 g·kg~(-1),均低于水铁矿胶体.水铁矿及其胶体吸附的As以专性吸附As、无定形铁氧化物结合As和晶型铁氧化物结合As形式存在,胶体上未形成残渣态As.因此,水铁矿胶体吸附As的牢固程度低于吸附As后形成残渣态As的水铁矿,且所吸附的As容易重新释放到环境中,增加环境风险.水铁矿单独存在时不具有将As(Ⅴ)还原为As(Ⅲ)的能力.  相似文献   

10.
砷还原微生物在原生高砷地下水形成中起关键作用,研究其对不同环境因素改变的响应以及对砷迁移与转化的影响是十分必要的。从石门土壤中分离得到一株耐酸砷还原菌,研究其形态和生理生化特征,通过分子生物学和微生物学手段对其进行系统分类和生理生化特性鉴定,并使用微生物学方法在不同温度、pH值和电子供体条件下进行培养,探究其对环境因素波动的适应能力,检测菌株对高砷土壤砷释放的影响。实验结果表明:该耐酸砷还原菌为芽孢杆菌属(Bacillus)成员,故命名为Bacillus sp.strain P3-23(以下简称P3-23);菌株P3-23最适宜的生长温度为30℃,在pH值为3.5~7.5范围内均可生长且具有砷还原能力,能够利用乳酸钠、丙酮酸钠、柠檬酸钠、酵母味素、丙三醇、葡萄糖、蔗糖为电子供体;菌株P3-23能够在72 h内完全还原2.0 mM As(Ⅴ)且菌液浓度呈上升趋势,具有强耐砷能力,40.0 mM砷存在条件下仍能生长;菌株P3-23促进土壤中砷释放能力较强,砷形态分析显示释放的可溶性砷中As3+占比达83.3%以上。菌株P3-23的分离不仅丰富了人们对砷还原微生物的认识,也说明砷还原微生物对不同环境因素胁迫具有相应的应答机制,预示着其可能存在于极端环境中。对不同环境中砷还原微生物进行研究,在完善砷的生物地球化学循环模式的同时有助于砷污染机制及砷修复生物手段的探索。  相似文献   

11.
含砷废物资源化产品中砷的浸出特性与环境风险分析   总被引:2,自引:0,他引:2  
分别以我国某地2种含砷废物(污泥和废渣)为研究对象,用EA NEN 7371实验方法分析其不同资源化产品(烧制砖、免烧砖和含砷水泥等)中As的有效量浸出特性,从环境风险的角度探讨了含砷废物资源化利用的可行性. 结果显示:含砷污泥进行烧砖处置后,其产品中As的有效量浸出率从15%左右升至60%~70%;含砷废渣与水泥进行混合粉磨共处置后,含砷水泥产品中As的有效量浸出率从60%~70%降至4%以下;含砷废渣制成免烧砖后,As的有效量浸出率从60%~70%降至10%左右. 表明含砷污泥不宜进行烧砖处置;而含砷废渣可根据含砷量,在控制掺加比例的条件下与水泥熟料共处置生产混合水泥或作为原材料生产免烧砖.   相似文献   

12.
在黔西南含砷热液金矿床中,砷异常与金矿化具有明显的空间分带性。研究结果表明,导致金、砷空间分带的原因由Au、As矿化分离引起,并受控于Au、As各自的地球化学行为及热液体系的物理化学条件的改变。  相似文献   

13.
自然界中,砷(As)主要被吸附在铁氧矿物上,吸附态砷从铁氧矿物释放至水体是水中砷污染的主要来源。在此过程中,微生物起着至关重要的作用。本研究的目的是探究加入硫酸盐还原菌Desulfovibrio vulgaris DP4对吸附态砷迁移转化的影响。结果表明,0 h两体系砷释放量均为0μmol·L-1。与对照组相比,前84 h DP4促进了吸附态五价砷[As(V)]的脱附,在13 h砷的释放量达到最大值12.6μmol·L-1,占初始总吸附量(16μmol·L-1)的79%,是对照组(1.5μmol·L-1)的8.4倍。而在84 h之后,DP4体系的砷浓度低于非生物对照组,表明溶解态砷被再次固定。此过程中,砷的释放量与氧化还原电位(Eh)显著相关(P=0.001)。XRD结果表明,在DP4作用下针铁矿的结晶度降低了50%,且结晶度越低,吸附能力越强,这可能是后期砷被再次固定的原因之一。同时SEM-EDS表明DP4使得针铁矿发生团聚,部分被转化为硫铁矿。As的XANES结果表明固相中没有硫化砷生成,这进一步证明固相中生成的主要是硫铁矿,它对砷的再吸附导致了后期DP4体系中溶解态砷的浓度低于非生物对照组。此外,在固相中检测出了19%的As(III),而液相中并未检测出溶解态的As(III),据此推测硫酸盐还原菌原位还原了吸附态As(V)。  相似文献   

14.
通过室内试验,研究了铝代水铁矿对As(Ⅴ)和Cd(Ⅱ)的协同作用过程及机制.结果表明,溶液体系p H值和重金属加入顺序明显影响铝代水铁矿对砷和镉的协同吸附与共沉淀.在近中性砷镉共存体系下吸附72h(p H为6. 0~6. 5),含20%铝的铝代水铁矿(AF20)对砷和镉的吸附容量达到了60. 9 mg·g~(-1)和17. 1 mg·g~(-1),去除率分别为96. 0%和73. 0%,砷和镉协同吸附到AF20颗粒内部孔隙,AF20对砷和镉的协同吸附效应明显;在砷溶液中加入镉体系下吸附72 h(p H为6. 1~6. 5),AF20对砷和镉的吸附容量分别为58. 1 mg·g~(-1)和12. 4 mg·g~(-1),去除率分别为96. 0%和48. 3%,砷的吸附限制了镉的固定;在镉溶液中加入砷体系下吸附72 h(p H为9. 5~9. 8),AF20对砷和镉固定量分别为20. 9 mg·g~(-1)和24. 4 mg·g~(-1),去除率分别为38. 8%和98. 9%,AF20对砷和镉的共沉淀效应明显,生成的砷镉难溶物通过堵塞孔道使镉呈稀疏条带状分布,同时阻碍砷的进一步吸附.上述结果表明,铝代水铁矿可协同吸附、共沉淀污染环境介质中的砷和镉.  相似文献   

15.
砷在地下含水层中的迁移转化、释放等地球化学行为与地下水的氧化还原环境及铁氧化物的存在形态密切相关。本文主要通过室内静态、动态实验及野外现场试验研究了Fe(Ⅱ)和O_2共存体系对模拟地下水中As(Ⅲ)固化效率与机理,研究表明:单纯的曝气行为对水体中铁和砷的价态改变均不明显,只有当Fe(Ⅱ)和O_2共存时才能有效改变砷的存在形态并通过发生吸附共沉淀作用使水体中As浓度降低下来。以质量比为Fe/As=20为例,有氧无氧两种条件下砷的去除率分别为81.3%和23.4%。模拟无氧条件下向流动相的含砷地下含水层中连续输入Fe(Ⅱ)时,溶液中的砷含量相比进水溶液浓度略有降低,出水溶液中以Fe(Ⅱ)和As(Ⅲ)为主。在有氧条件下持续30天向含砷试验砂柱内输入Fe(Ⅱ),其总量累积可达到283.65 mg,被固定于砂柱内的总砷含量达到25 075μg,固化能力达到88.40μg/mg。Fe(Ⅱ)与O_2共存体系对地下水中As(Ⅲ)的固化行为主要包括O_2对As(Ⅲ)及Fe(Ⅱ)氧化和Fe(Ⅲ)与As(V)的吸附共沉淀作用,其中溶解氧的存在是所有反应发生的必要前提条件。  相似文献   

16.
三种氧化铁吸附水环境中砷的试验研究   总被引:6,自引:1,他引:5  
采用两种人工合成的氧化铁(针铁矿、水铁矿)和赤铁矿作为吸附剂,对含砷(三价砷及三价五价砷混合液)水进行了吸附试验。结果表明,在初始浓度为1200μg/L的As(Ⅲ)溶液中,水铁矿的吸附效果最好,针铁矿和赤铁矿吸附效果较差;在初始pH为7,As(Ⅲ)和As(Ⅴ)摩尔比为1:1的混合液中时,三种铁矿对总砷的吸附效果均随着As/Fe摩尔比的增大而减小;在A(sⅢ)和As(Ⅴ)摩尔比为1:1的混合液中,吸附总砷效果最好的是针铁矿,水铁矿次之,赤铁矿的吸附效果最差;A(sⅤ)的存在对除砷效果有一定的影响,三价砷和五价砷共存时,三种铁矿对其吸附具有一定的选择性。  相似文献   

17.
基于典型的希瓦氏金属还原菌(Shewanella decolorationis S12)和石英砂负载铁砷(As-IOCS)的相互作用,探讨了不同来源及组分溶解有机质和生物/非生物条件下对上述作用过程的影响.结果表明,不同类型及组分溶解有机质(DOM)均能使石英砂上负载的铁砷微生物还原解离/解吸程度得到一定程度的加强.而非生物反应体系中,只有含氧化还原敏感官能团结构的蒽醌类物质(0.1 mmol·L-1AQS)对铁砷的解离/解吸作用产生明显影响.在0.1 mmol·L-AQS和有机络合物(2 mmol·L-1 EDTA)的影响下,使得石英砂上负载铁的微生物异化还原程度加强,导致As(Ⅴ)从石英砂负载铁上的解吸程度也随之得到加强;在未加菌体系中,AQS和EDTA和不同组分的DOM类似,对As(Ⅴ)从IOCS上解吸程度影响微弱.对于As(Ⅲ)来说,只有在AQS的影响下,其含量得到显著增加,这可能是作为氧化还原中介体的AQS,在厌氧的生物/非生物条件下,能促进电子在As不同形态之间的转移,使得高价态As(Ⅴ)向还原态As(Ⅲ)的还原转变更易进行.当S12菌液接种含量增加时,在污泥不同组分DOM的影响下,As(Ⅴ)的解吸程度在反应300h前得到明显加强,而As(Ⅲ)的含量在整个反应期间,均快速上升,表明菌液含量高的体系,微生物铁异化还原过程得以持续进行,同时也促进了As(Ⅴ)向As(Ⅲ)的还原转变.  相似文献   

18.
缺氧条件下土壤砷的形态转化与环境行为研究   总被引:3,自引:2,他引:1  
采集张士污灌区0~100 cm深的土壤并在实验室里负载低浓度的砷,采用不加硫和加硫对比研究了厌氧条件下土著微生物对土壤中砷的形态转化、环境行为影响及其机制.结果表明,在不外加硫酸盐条件下厌氧培养8 d后,微生物还原作用造成砷的大量还原和释放,释放的砷70%以上是以As(Ⅲ)形式存在,尤其20~40 cm深度土壤砷的释放量明显高于其它层土壤,As(Ⅲ)和As(T)分别达到892.8μg.L-1和1 240.6μg.L-1.与非生物对照相比每层土中盐酸可提取的砷总量都大大降低,且盐酸提取的As(T)几乎全部转化为As(Ⅲ).伴随砷的释放,铁发生还原和释放,溶解态的亚铁基本都在40 mg.L-1以上,不同土层固相中亚铁离子的量都在9.0~13.4 g.kg-1范围内,固相盐酸可提取态总铁中亚铁离子所占的比例基本都在50%以上,说明微生物还原作用造成固相中铁氧化物发生还原性溶解和矿物结构转化.当体系中添加10 mmol.L-1的硫酸盐时,每层土的生物培养体系中铁的释放几乎完全被抑制,砷和铁浓度也减少了50%.与不加硫生物培养体系相比,固相中盐酸可提取的砷量减少了50%,一部分砷被转化为稳定的硫化物As2S3而固定.可见在硫酸盐不足条件下微生物还原作用可造成砷被还原、活化和释放,而补充土壤中硫酸盐的量可促使微生物还原/活化的砷转化成更加稳定的形态,稳定的硫化物矿物As2S3是土壤微生物固定砷的重要途径.  相似文献   

19.
土壤中砷的化学平衡   总被引:30,自引:0,他引:30  
本文比较详细地综述了砷的化学特性,环境背景值及来源和循环,土壤中砷的三大化学平衡即沉淀溶解平衡。氧化还原平衡,吸附解吸平衡,以及微生物对砷的转化 。  相似文献   

20.
砷(As)是酸性矿山废水(AMD)环境中常见的类重金属,有剧毒和强致癌性。在AMD环境中,As的来源主要为硫化矿物氧化溶解,As的地球化学行为包括氧化、还原、吸附、共沉淀、解吸和溶解等。目前,已开发的As污染修复技术分为源头控制和末端治理技术,其中,源头控制是通过覆盖、钝化或喷洒灭菌剂等抑制硫化矿物氧化溶解;末端治理是通过吸附、絮凝、膜处理或生物处理等清除水体中的As。该文综述了AMD环境中As的来源和地球化学行为,分析了As污染的机制;综述了As污染修复技术的研究进展,对As污染修复的研究方向进行了展望,以期为矿区As污染的风险评估和治理提供科学支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号