首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀和液相还原两步法制得四氧化三铁负载纳米零价铁(Fe3O4-nZVI),将其作为类Fenton反应的催化剂用于水中磺胺甲恶唑(SMX)的降解.通过批实验法研究了H2O2浓度、Fe3O4-nZVI投加量、pH值、SMX初始浓度、反应温度等因素对SMX降解的影响.SEM、EDS、XRD和XPS表征结果表明,制备的Fe3O4-nZVI为纳米级磁性复合材料.批实验结果表明,在一定实验条件范围内,提高H2O2浓度、Fe3O4-nZVI投加量和反应温度,以及降低体系pH值,均可提高SMX的降解率.动力学拟合参数表明,SMX的类Fenton催化降解符合拟一级动力学模型.在25℃时,当H2O2浓度为10mmol/L、Fe3O4-nZVI投加量为0.8g/L、pH=3、SMX初始浓度为10mg/L,SMX在180min时的降解率为99.61%.用VSM测得Fe3O4-nZVI的饱和磁化强度为105.52emu/g,表明其易于磁回收.重复利用实验表明,Fe3O4-nZVI具有较好的反应活性和稳定性.自由基淬灭实验表明,·OH的氧化作用是SMX降解的主要机理.  相似文献   

2.
建立了微塑料(Microplastics,MPs)荧光定量分析方法,系统研究了Fe3O4纳米颗粒对水中聚苯乙烯MPs的磁性去除效果.结果表明,MPs浓度在本实验范围内(0.2~10.0mg/L)与荧光强度线性关系良好,相关系数均>0.9990,能准确测定不同粒径(100~1000nm)MPs的浓度.MPs初始浓度与Fe3O4纳米颗粒投加量对MPs去除效果具有影响.增加Fe3O4纳米颗粒的投加量能够有效提升水中MPs的去除率,当Fe3O4投加量为12mg/L时,去除率可达90.8%.在低Fe3O4投加量时,MPs去除率随着MPs初始浓度增加而显著增加,显著性水平为0.015;但在中、高Fe3O4投加量时,初始浓度对去除效果影响很小,显著性水平分别为0.073和0.060.Fe3O4纳米颗粒对MPs的附着过程能够在180min内趋于平衡,整个动力学可通过拟一级或拟二级模型进行拟合.  相似文献   

3.
Fe3O4/BC复合材料的制备及其吸附除磷性能   总被引:2,自引:0,他引:2       下载免费PDF全文
为解决磁性吸附剂Fe3O4不稳定、易在水中团聚以及吸附效率较低的问题,以BC(生物炭)为载体,采用化学共沉淀法制备了Fe3O4/BC(生物炭负载的纳米四氧化三铁)复合材料,并将其应用于水体中PO43--P的吸附去除;探究了Fe3O4/BC对水中PO43--P的吸附-解析性能,考察了纳米Fe3O4负载比例、吸附体系pH和初始ρ(PO43--P)等因素对Fe3O4/BC吸附PO43--P效率的影响,并考察了吸附机制.结果表明:所制备的Fe3O4纳米颗粒呈球形,均匀散布在生物炭表面;Fe3O4/BC复合材料能高效吸附水中的PO43--P,在pH=3、温度为25℃、ρ(PO43--P)为50 mg/L、Fe3O4/BC投加量为400 mg(二者质量比为1:1),吸附3 h达到平衡后,Fe3O4/BC吸附PO43--P效率达到92.14%. Fe3O4/BC复合材料吸附PO43--P的机制包括配位体交换和静电吸引,吸附过程较好地符合准二级动力学模型和Langmuir等温吸附方程. Fe3O4/BC具有良好的解析性能,用c(NaOH)为2.0 mol/L的溶液对吸附PO43--P饱和后的Fe3O4/BC进行解析,解析效率达到80%.研究显示,Fe3O4/BC重复利用性好,在第4次利用后还能保持75%以上的吸附效率.   相似文献   

4.
武奇  范建伟 《环境工程》2022,40(5):25-30
采用共沉淀法制备Fe3O4-RGO纳米复合催化剂,并将其应用于类芬顿处理垃圾渗滤液,研究了反应时间、初始pH值、催化剂质量浓度和H2O2投加量对Fe3O4-RGO纳米复合催化剂类芬顿降解垃圾渗滤液COD去除率的影响。结果表明:反应时间为90 min,初始pH值为3,催化剂质量浓度为1 mg/L,H2O2投加量为0.08 mmol/L时,COD去除率达到最大值64.7%。有机物组分对比结果显示,类芬顿反应后垃圾渗滤液中大分子有机物得到较好的降解转化。Fe3O4-RGO纳米复合催化剂具有较好的重复利用性,重复使用5次后对垃圾渗滤液的COD去除率仅降低2.3%。  相似文献   

5.
利用水热法成功制备了Fe3O4/FeS2催化剂,并将其用于构建非均相芬顿体系降解典型的苯胂酸类污染物(洛克沙胂,ROX).XRD、SEM、XPS和磁学测量系统(VSM)等表征结果表明,Fe3O4/FeS2呈明显的颗粒状且具有良好的磁性.降解实验结果显示,在最优条件下(初始pH值为4.5、ROX起始浓度为20mg/L、Fe3O4/FeS2投加量为0.15g/L和H2O2浓度为0.034g/L,Fe3O4/FeS2介导的非均相芬顿体系可以超快速降解ROX,1min后的降解效率达到96.74%,明显优于单独的Fe3O4或FeS2体系.此外,Fe3O4/FeS2可以通过磁铁进行快速回收利用,同时也具有良好的重复利用性能,使用3次后,ROX的降解效率仍超过80%.机理分析表明,Fe3O4/FeS2能够快速地催化H2O2产生具有强氧化性的羟基自由基(·OH).在·OH的作-用下,ROX分子结构中C-As、C-N和C-C等化学键发生断裂,发生脱砷、脱硝和开环等反应,进而生成一系列的有机产物(如酚类、醌类、小分子有机酸等)和无机产物(As (V)和NO3-).之后,无机砷能够被吸附在催化剂表面,而有机产物则进一步被矿化.  相似文献   

6.
曹惜霜  信欣  杨豪  鄂荻 《中国环境科学》2022,42(5):2169-2178
采用共沉淀法制备得到磁性材料壳聚糖@柠檬酸改性Fe3O4(CTS@Fe3O4-COOH),通过单因素与正交试验考察了不同条件下其对小球藻(Chlorella vulgaris)的采收效率.结合XRD、FT-IR和VSM等材料的结构性质表征、表面Zeta电位及Derjaguin-Landau-Verwey-Overbeek(DLVO)理论分析,探讨CTS@Fe3O4-COOH对小球藻的絮凝采收机理.结果表明,CTS@Fe3O4-COOH对小球藻具有高效采收效率,与未改性相比采收效率提高约30%.单因素试验表明材料投加量与pH值对小球藻采收效率的影响较大;正交试验表明当CTS@Fe3O4-COOH投加量为4.5g/L时,在pH 4的条件下,经500r/min快搅3min后再70r/min慢搅5min,对小球藻的采收效率高达98.35%.DLVO等理论分析表明,CTS@Fe3O4-COOH对小球藻的采收机理为电荷中和、静电修补、吸附架桥与整体絮凝联合作用.本文结果为CTS@Fe3O4-COOH采收固定烟气能源微藻的实际应用提供数据支持.  相似文献   

7.
为研究磁性纳米Fe3O4/CeO2复合材料在高浓度难降解有机废水处理中的应用,利用共沉淀法制备Fe3O4/CeO2复合材料,并将其作为非均相类Fenton催化剂降解橙黄G染料废水,利用单因素法优化出最佳降解工艺,同时利用TOF-MS/MS(飞行时间质谱)检测降解中间产物,推测出可能降解途径.结果表明,当Ce/Fe为1 :1(质量比)时制备的Fe3O4/CeO2复合材料催化效果最佳.最佳降解工艺条件:初始pH为2.0,温度为30 ℃,H2O2投加量为30 mmol/L,Fe3O4/CeO2复合材料的投加量为2.0 g/L,初始ρ(橙黄G)为50 mg/L.在最佳降解工艺条件下反应120 min后,橙黄G去除率为96.2%,TOC去除率为65.0%,Fe3O4/CeO2复合材料至少可重复利用6次.研究显示,橙黄G降解主要有三条可能的降解途径,包括偶氮键断裂、偶氮键与苯环断开、脱磺酸基、羟基化以及开环等过程,共检测出八种可能的降解中间产物,主要有苯胺、苯酚、萘酚以及羧酸等.   相似文献   

8.
为提升厌氧微生物对含硒(Ⅳ)废水的处理效果,利用ASBR反应器研究Fe3O4对厌氧微生物还原除硒(Ⅳ)的影响,分析了出水硒浓度、硒形态与分布、硒还原酶活性和微生物菌群等变化.结果表明,高碳源浓度时,投加Fe3O4对厌氧微生物去除硒(Ⅳ)没有影响;低碳源浓度时,Fe3O4能显著提高厌氧微生物还原除硒(Ⅳ)的效率和速率,Fe3O4使硒(Ⅳ)去除率由对照组的(97.3±0.5)%提升至(98.2±0.5)%,最大反应速率也提高了3.6倍.同时投加Fe3O4也降低上清液硒(Ⅳ)、硒(0)占比,增加硒(-Ⅱ)占比,促进厌氧微生物还原硒(0)-硒(-Ⅱ)的进程.通过酶活性和微生物菌群结构等分析发现,Fe3O4提高亚硫酸盐还原酶、谷胱甘肽还原酶、周质延胡索酸还原酶和亚硝酸盐还原酶的活性,增加了铁还原科细菌Rhodocyclaceae以及与电...  相似文献   

9.
采用两步水热法制备了新型磁性纳米Fe3O4@α-MnO2复合材料作为催化剂,用于活化过一硫酸盐(PMS)产生强氧化性的硫酸根自由基(SO4-·)氧化降解偶氮染料活性黑5(RBK5).采用透射电子显微镜(TEM),X射线粉末衍射仪(XRD)和振动样品磁强计(VSM)对制备的催化剂进行表征,证明成功合成了纳米α-MnO2包覆Fe3O4形态的Fe3O4@α-MnO2催化剂,催化剂的饱和磁化强度为39.89emu/g.Fe3O4@α-MnO2催化剂活化PMS与单一的Fe3O4和α-MnO2活化PMS相比,具有更高的催化效率,说明铁锰双金属存在协同作用.同时研究了催化剂的投加量、PMS的浓度和初始pH值等各种因素对RBK5的降解效率以及反应动力学的影响.实验结果表明,Fe3O4@α-MnO2催化剂活化PMS降解RBK5的过程符合准一级反应动力学,在催化剂投加量为1.2g/L,PMS的浓度为4mmol/L,初始pH值为7.0,反应时间为60min的情况下,浓度为30mg/L的RBK5的降解效率可达到91%,此时RBK5的降解速率常数也达到最高值0.023min-1.此外,通过加入自由基淬灭剂甲醇、叔丁醇和硝基苯判断了Fe3O4@α-MnO2/PMS体系中起主要氧化降解作用的活性物种为SO4-·.  相似文献   

10.
采用Fe3O4活化过硫酸盐(PS)同步去除水中的NOR (诺氟沙星)和Pb (II).探讨了Fe3O4投加量、PS浓度、初始pH值和Pb (II)浓度对NOR降解的影响.结果表明,NOR的降解符合伪一级反应动力学,在温度为30℃、NOR初始浓度为5.0mg/L、Pb (II)浓度为1.0mg/L、Fe3O4投加量为2.0g/L、PS浓度为1.5mmol/L、初始pH值为7.0的条件下,反应120min后,NOR降解率达90.2%,Pb (II)去除率为99.5%.自由基淬灭实验证实,硫酸根自由基(SO4-·)是NOR降解的主要自由基.通过LC-MS分析结果推测了NOR可能的降解路径和中间产物.Fe3O4活化PS高级氧化工艺可作为一种同步去除有机污染物和重金属的工艺.  相似文献   

11.
为了解SO4-·(硫酸根自由基)对阿特拉津的降解能力,以Fe3O4为K2S2O8活化试剂,以阿特拉津为研究目标污染物,运用UVA/Fe3O4/K2S2O8体系系统探讨阿特拉津在不同环境因素下的降解过程,并对催化剂的稳定性和重复利用进行了考察.结果表明:UVA/Fe3O4可以有效活化K2S2O8来降解阿特拉津,最佳c(K2S2O8)为1 mmol/L,反应6 h阿特拉津降解率可达到90%.淬灭试验表明,SO4-·是该体系中的主要活性物种,贡献率约为96%;HO·的作用比较弱.初始pH为3时,阿特拉津6 h的降解率为98%,总铁的溶出量达到0.9 mg/L;而初始pH为7时,体系对阿特拉津的降解率达到85%,基本没有总铁的溶出,表现出了一定的稳定性.在腐殖酸存在的条件下,UVA/Fe3O4/K2S2O8体系对阿特拉津的降解效果优于UVA/Fe3O4/H2O2体系.对Fe3O4催化剂进行3次循环测试,阿特拉津的降解率分别为90%、89%和86%.研究显示,UVA/Fe3O4能用于活化K2S2O8的高级氧化体系中,可有效降解除草剂阿特拉津.   相似文献   

12.
针对目前如污水厂二沉池出水磷含量超标等磷污染现状,以水体中磷元素为吸附去除对象,合成了一种新型材料Fe3O4@CNF@Zn-BTC用于磷元素的特定吸附,由磁性纳米Fe3O4粒子、羧基化纤维素纳米纤维和金属有机骨架Zn-BTC在一般实验室条件下制成。CNF材料与MOFs材料的负载提升了复合材料的结晶度,进而提升复合材料的刚性和稳定性,且产生TOCNF表面—COO—和Fe以及MOFs上相关的键合,提升复合材料孔道率的同时提升了材料的刚性,极大程度上弥补了MOFs材料的刚性、稳定性短板。用SEM、FTIR、XRD、XPS和BET等对制成的Fe3O4@CNF@Zn-BTC进行了表征分析,并探讨了其在常温常压条件下对于水体中微量磷元素的去除效果。结果表明:对于10 mg/L的含磷水样,投加极少量Fe3O4@CNF@Zn-BTC材料可在常温常压60 min将磷元素含量降至0.3~0.5 mg/L,符合GB 8978—1996《污水综合排放标准》一级A标准,平均去除率高达95%。与其他如活性炭等常规除磷材料相比,Fe3O4@CNF@Zn-BTC材料除磷效率高,回收简单,再生性强,价廉易合成。因此,Fe3O4@CNF@Zn-BTC在改善磷污染环境水质方面具有巨大前景。  相似文献   

13.
为获得高效催化活性的光催化材料,研究不同煅烧氛围对材料在可见光下催化性能的影响,以膨胀珍珠岩(EP)为载体,采用溶胶-凝胶法,在不同煅烧氛围(O2和/或NH3)下制备Fe2O3/TiO2负载EP的光催化复合材料〔Fe2O3-TEP(O2)、Fe2O3-TEP(NH3)、Fe2O3-TEP(O2,NH3)、Fe2O3-TEP(NH3,O2)〕,采用EDS(X-射线色散能谱)、BET(比表面积及孔径分析)、XRD(X射线衍射)、SEM(扫描电子显微镜)、XPS(X射线光电子能谱)等对复合材料进行表征,并研究了其在可见光下对罗丹明B的光催化降解效果.结果表明:①复合材料成功负载了Ti、Fe元素,负载的TiO2以锐钛矿型存在,Fe2O3的掺杂增强了TiO2对可见光的响应能力;②不同的煅烧氛围明显影响复合材料的晶粒尺寸、比表面积和光催化性能,其中,Fe2O3-TEP(O2,NH3)的光催化性能最好,4 h后罗丹明B降解率达到87.59%,Fe2O3-TEP(NH3,O2)、Fe2O3-TEP(O2)和Fe2O3-TEP(NH3)4 h后对罗丹明B的降解率则分别为65.02%、62.48%和47.48%;③在试验条件下,复合材料的光催化反应符合一阶反应动力学方程,Fe2O3-TEP(O2,NH3)、Fe2O3-TEP(NH3,O2)、Fe2O3-TEP(O2)和Fe2O3-TEP(NH3)相应的降解速率常数分别为0.008 3、0.004 3、0.004 3和0.002 7 min-1.研究显示,通过溶胶-凝胶法所制备的复合材料(Fe2O3-TEP)经煅烧后所得矿相均一;Fe2O3掺杂TiO2可形成Ti—O—Fe键,减小TiO2固有的禁带宽度;复合材料光催化性能也受到煅烧氛围的影响,先O2后NH3煅烧条件下所得材料的光催化性能最佳.   相似文献   

14.
通过在固定的水力停留时间下(24h)逐步提升盐度,并设置有无Fe3O4的平行反应器作对照,考察不同盐度水平下Fe3O4对厌氧系统运行效能和厌氧污泥颗粒化进程的影响.结果表明,在0~2%的NaCl盐度水平下,Fe3O4的加入均能有效提升厌氧系统的处理效率并保证其稳定进行.Fe3O4对产甲烷过程的促进作用在不同盐度水平下有所差异,当盐度分别为0,0.5%,1%,2%时,实验组的甲烷产量分别为对照组的1.08,1.36,1.33和1.17倍,低盐环境下的促进效果更为显著.污泥特性和胞外聚合物的分析结果发现,Fe3O4的引入有利于形成结构更为紧密的厌氧颗粒污泥,进而强化厌氧污泥颗粒化进程.微生物群落结构分析结果表明,随着盐度提升,氢型产甲烷菌得以快速富集,同时主要细菌类型和代谢途径均发生了改变.而Fe3O4对厌氧系统中微生物菌群结构和...  相似文献   

15.
为研究多相Fenton体系降解有机污水过程的放热规律,为污水处理的能源化利用提供技术支撑,本文以半焦(SCe)为载体,制备了Fe2O3@SCe新型复合材料,并对复合材料进行了BET、FTIR、XRD、SEM表征,研究了Fe2O3@SCe/H2O2多相Fenton体系处理邻苯二胺(OPD)模拟废水的降解性能和放热规律.结果表明,Fe2O3均匀负载于SCe颗粒表面,Fe2O3@SCe复合材料保留了改性SCe的多孔形态和强吸附性,在3.1~8.9的pH值范围内均表现出较高的催化活性;Fe2O3@SCe/H2O2多相Fenton体系在去离子水中自身分解和在邻苯二胺模拟废水的降解反应都释放了大量的热量,在[OPD]= 0.04mol/L;pH=7.8;T0=30℃;[H2O2]=0.25mol/L;[Fe2O3@Sce]=533g/L;t=180min反应条件下的溶液温度升高数值为7.1℃,降解率为88.2%; H2O2的投加浓度是影响反应放热量的主要因素.  相似文献   

16.
目的 探究纳米Fe3O4增强硅橡胶与铁氧体的界面黏结特性。方法分别开展准静态拉伸试验、界面法向和切向黏结强度试验。采用超弹性理论,分析纳米Fe3O4增强硅橡胶材料的拉伸行为,采用双线性和指数内聚力模型,分析纳米Fe3O4增强与铁氧体的界面破坏行为。结果 通过拉伸试验获得了不同纳米Fe3O4含量的硅橡胶的工程应力应变曲线及两参数Mooney-Rivlin模型,小变形范围的模型误差在1%以内,大变形范围的最大误差为3.8%。通过界面强度试验,获得了不同纳米Fe3O4含量的硅橡胶和铁氧体界面的法向和切向力-位移曲线、黏结强度和界面断裂能,得到了界面法向和切向黏结强度内聚力模型参数。结论 随着纳米Fe3O4含量增加,硅橡胶的拉伸强度增加,界面法向黏结强度和断裂能增大,而切向黏结强度和断裂能变化不显著。双线性内聚力模型更适合作为纳米Fe...  相似文献   

17.
Herein,a one-step co-pyrolysis protocol was adopted for the first time to prepare a novel pyrogenic carbon-Cu0/Fe3O4 heteroatoms (FCBC) in CO2 ambiance to discern the roles of each component in PDS activation.During co-pyrolysis,CO2 catalyzed formation of reducing gases by biomass which facilitated reductive transformation of Fe3+ and Cu2+ to Cu0 and Fe3O4,respectively.According to the a...  相似文献   

18.
文章采用共沉淀法制备负载Fe3O4的聚氨酯海绵填料,考察生物滴滤器(BTF)不同条件下净化氯苯废气的性能和微生物群落变化。结果表明,负载Fe3O4后,BTF系统第18天启动完成,比未负载的缩短7 d;停留时间90、60、30 s时,BTF系统最大去除负荷分别为28.39、38.20和57.87 g/(m3·h),比未负载的相应提高了25.68%、50.63%、73.63%;BTF停运7 d后系统性能在第5天完全恢复。负载Fe3O4后填料表面变得粗糙,微生物生长均匀;高通量测序表明,运行80 d后BTF中优势菌种占比上升明显,系统内优势菌门为变形菌门、拟杆菌门、放线菌门,优势菌属为罗河杆菌属、假单胞菌属;负载Fe3O4后,微生物群落中菌种组成向具有强降解能力的优势菌种转化,提高BTF净化性能。  相似文献   

19.
将海藻酸钠(SA)、Fe3O4和La(Ⅲ)离子通过溶液反应法制得一种新型磁性海藻酸镧复合凝胶微球(Fe3O4@SA/La),采用扫描电子显微镜(SEM)、X射线衍射(XRD)及红外光谱(FT-IR)等进行表征.以直接红棕RN(DRB RN)和直接深棕2M(DDB 2M)2种直接染料为吸附对象,考察了染料溶液pH值、吸附时间和温度对吸附剂性能的影响.结果表明:在吸附剂投加量为0.1g、染料溶液自然pH值条件下,Fe3O4@SA/La复合凝胶微球室温下对DDB 2M和DRB RN均有良好的吸附性,120min即可达吸附平衡,吸附量分别可达678和688mg/g.吸附过程符合拟二级吸附动力学方程,等温吸附符合Freundlich模型.吸附剂对2种染料的吸附热力学参数(ΔG<0、ΔH<0、ΔS>0)表明吸附反应均为混乱度增加的自发放热反应.  相似文献   

20.
采用共沉淀法和高温煅烧法制备 Fe2O3和 Mo S2复合材料(FM),将其作为非均相催化剂活化过硫酸盐(PS)降解磺胺嘧啶(SDZ)。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)对FM的形态和结构进行表征。研究了FM投加量、PS浓度、初始p H、无机阴离子、腐殖酸对SDZ降解的影响。结果表明:在FM投加量为0.4 g/L、PS浓度为1 mmol/L、初始p H为7、SDZ浓度为20 μmol/L条件下,FM/PS体系在30 min内对SDZ的降解率达到100%。电子顺磁共振(EPR)和自由基淬灭实验结果表明,FM/PS 体系中主要的活性因子为硫酸根自由基(SO4·-)和羟基自由基(·OH),其中 SO4·-起主导作用。FM/PS 体系降解 SDZ 的机理为:Mo S2表面的Mo4+直接催化PS,同时促进Fe2O3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号