首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为消除医药化工废水高盐度及硝基化合物、杂环芳烃对微生物脱氮的抑制影响,该文以含有杂环化合物医药废水的处理厂活性污泥为对象,从中筛选对有毒有机物耐受的菌株X4。根据其系统发育和表型遗传鉴定为Acinetobacter haemolyticus。探究该菌株异养硝化-好养反硝化特性及在不同碳源、C/N、温度、转速、pH条件下的脱氮效能。结果表明,菌株X4在硝化、反硝化培养基中24 h内氨氮、硝酸盐氮去除率分别为99.14%、90.95%,在实际高盐难降解医药废水处理中氨氮去除率也有52.62%,36 h内对废水COD降解速率达到93.33 mg/(L·h)。当菌株X4在以碳源为丁二酸钠、C/N为12、温度为30℃、pH为9、转速为170 r/min条件时脱氮效果最佳。菌株X4对温度及p H耐受范围广,对C/N要求低,在高盐医药化工废水处理方面具备应用价值。  相似文献   

2.
异养硝化-好氧反硝化菌YL的脱氮特性   总被引:3,自引:9,他引:3  
梁贤  任勇翔  杨垒  赵思琪  夏志红 《环境科学》2015,36(5):1749-1756
针对传统自养硝化-厌氧反硝化工艺流程长、脱氮效率低的问题,从驯化成熟且具有高效同步硝化反硝化作用的SBR反应器中筛得1株异养硝化菌YL,经鉴定为铜绿假单胞菌(Pseudomonas aeruginosa),并通过单因子试验和正交试验对其异养硝化和好氧反硝化特性进行了研究.结果表明,菌株YL进行氨氧化作用的最适条件为:碳源为琥珀酸钠、C/N为10、p H为7.0、温度为30℃、转速为160~200 r·min-1,此时氨氧化速率为5.05 mg·(g·h)-1,TOC转化速率为45.95 mg·(g·h)-1,氨氮和TOC去除率分别为100%和90.8%;菌株YL还能够利用亚硝酸盐、硝酸盐和羟胺进行生长代谢,去除率分别为92.7%、93.6%和94.8%;影响菌株YL好氧反硝化性能最主要的因素为C/N,在最优条件(C/N=10,T=30℃,r=200 r·min-1,p H=7)下,硝氮去除率为94.6%,总氮去除率76.3%.表明菌株YL能够独立快速高效地完成异养硝化和好氧反硝化脱氮过程.  相似文献   

3.
文章从碳源、碳氮比、pH、温度及投菌浓度5个方面对好氧反硝化芽孢杆菌Bacillus sp.H2进行脱氮特性的研究.研究结果表明,以葡萄糖、乳糖作为碳源时,菌株Bacillus sp.H2的好氧反硝化效率要显著高于以乙醇、酒石酸钾钠、丁二酸钠、醋酸钠作为碳源时的效率,且葡萄糖略高于乳糖;当C/N≥6(质量比)时可进行完...  相似文献   

4.
一株好氧反硝化菌的反硝化性能研究   总被引:6,自引:2,他引:4  
从长期运行的生物滤塔中筛选出一株好氧反硝化菌株A1,经鉴定为恶臭假单胞菌Pseudomonas putida。文章目的是对A1的反硝化特性进行研究,结果表明A1菌株在好氧条件下能有效去除培养液中的硝酸盐氮,24h脱氮率可达到94.84%。C/N对菌株A1的好氧反硝化能力有很大影响,当C/N>5时,基本能够进行完全的反硝化。和其他已报道的好氧反硝化菌相比,A1菌株有着更高的氧耐受浓度。菌株A1能够以硝酸盐或亚硝酸盐和氧气为电子受体进行协同呼吸,硝酸盐呼吸和亚硝酸盐呼吸都具有较高的脱氮效率,并且亚硝酸盐呼吸要较硝酸盐呼吸更容易进行。以丁二酸盐、葡萄糖和乙酸盐作为碳源时,其脱氮效果均要明显好于乙醇作为碳源。  相似文献   

5.
菌株DA-1被发现能在好氧和厌氧环境中将硝酸盐转化为气态氮。在以NO3-为唯一氮源的条件下研究了碳源、C/N和pH值对菌株DA-1好氧和厌氧反硝化脱氮的影响。结果表明:同等条件下,48 h内菌株DA-1的厌氧脱氮效率高于好氧脱氮率;菌株DA-1能在好氧和厌氧条件下利用乙酸、柠檬酸以及葡萄糖进行细胞增殖和反硝化。在厌氧条件下,三者作为碳源时的反硝化效率分别为(34.04±0.15)%、(22.72±0.32)%和(11.32±0.06)%,均低于好氧条件下的(25.38±0.14)%、(17.52±0.11)%和(8.06±0.01)%。2种条件下均是乙酸为碳源时反硝化效率最高。而丁二酸仅能在厌氧环境中作为电子供体参与反硝化反应。C/N越高越有利于菌株DA-1的厌氧反硝化,当C/N为10时,反硝化效率最高为(35.06±0.19)%。而在好氧条件下,菌株反硝化效率随着C/N的升高,先升高再降低,当C/N为8时,反硝化效率最高;好氧和厌氧脱氮的最适pH值为7.0。体系偏酸或者偏碱都会造成菌株DA-1脱氮效率的降低并出现亚硝酸盐累积。厌氧环境中pH=5.0时累积的亚硝酸盐浓度高达(8.95±2.05)mg/mL。  相似文献   

6.
1株好氧反硝化菌的分离鉴定及反硝化特性研究   总被引:6,自引:8,他引:6  
经BTB培养基初筛和反硝化活力定量测定,从草鱼养殖池水中分离得到1株具有较高脱氮效率的好氧反硝化菌F1.通过形态观察、生理生化特性及16S rDNA同源性分析,确定该菌株为施氏假单胞菌(Pseudomonas stutzeri).反硝化特性研究结果表明,该菌脱氮的最适碳源为乙酸钠、柠檬酸钠、葡萄糖和蔗糖,对硝酸盐的去除...  相似文献   

7.
同步硝化反硝化生物脱氮技术   总被引:6,自引:0,他引:6  
从宏观环境理论、微环境理论、微生物理论三个方面阐述了同步硝化反硝化的作用机理,并结合目前的国内外研究成果综述了其影响因素,同时介绍了同步硝化反硝化技术的应用现状,提出了该技术今后的研究方向.  相似文献   

8.
基于马赛菌属脱氮Massilia neuiana的模式菌株PTW21进行研究,探讨其异养硝化-好氧反硝化脱氮能力。菌株PTW21具有高效异养硝化和好氧反硝化能力,对NH4+-N和NO2--N去除率均超过90%。同时,菌株PTW21具有同步硝化反硝化能力,且反硝化效率高于硝化效率,但当有NH4+-N存在时,会优先利用NH4+-N,再利用NO2--N,存在硝化-反硝化竞争抑制现象。同步硝化反硝化时,菌株PTW21可以去除95%以上的NH4+-N和NO2--N。Massilia neuiana的研究丰富了异养硝化-好氧反硝化微生物的种类,也为该菌种在污水处理厂的生物强化应用提供了前期基础。  相似文献   

9.
耐冷好氧反硝化菌因其独特的生长特性与同步异养硝化好氧反硝化的功能,为解决天然水体中氮素的去除提供了新的技术思路。综述了好氧反硝化作用机理研究进展,包括耐冷好氧反硝化菌的富集-驯化-筛选方法,已分离的耐冷好氧反硝化菌的类群及其生长特性,耐冷好氧反硝化菌的生物脱氮影响因素及其应用领域。耐冷好氧反硝化菌在低温环境生物脱氮方面具有明显的优势。因此,对耐冷好氧反硝化菌的脱氮作用机理和实际工程应用进行展望。  相似文献   

10.
同步硝化反硝化好氧颗粒污泥脱氮过程条件研究   总被引:3,自引:0,他引:3  
具有同步硝化与反硝化功能的好氧颗粒污泥适合好氧与厌氧微生物生长代谢。反应液中氨氮浓度为201mg/L时,在6h反应周期内氨完全被氧化,出水中检测不到NO2^-—N,仅残留2mg/L的NO3^-—N。颗粒污泥优化的反应条件为:温度25~38℃;pH7~8;溶解氧浓度1~2mg/L。好氧颗粒污泥对COD和氨氮的亲和常数分别为100mg/L和2mg/L。  相似文献   

11.
孙家君  刘芳  胡筱敏 《环境工程》2014,32(12):62-64
研究室温条件下SBR反应器中好氧反硝化脱氮过程的实现,并在此基础上研究了溶解氧和曝气时间对好氧反硝化菌脱氮效果的影响。结果表明:升高溶解氧能够明显增加COD去除率;延长曝气时间能够提高COD、NO-3-N、TN去除率;并且在溶解氧浓度为3~4 mg/L、曝气时间为6 h的条件下,好氧反硝化菌对污染物去除率较高并且稳定,对COD、硝态氮和TN的去除率分别达到92.74%、89.41%、71%左右。  相似文献   

12.
《环境科学与技术》2021,44(6):98-102
好氧反硝化细菌是微生物脱氮技术的重要支撑,具有处理周期短、脱氮效率高等优势。该文从SBR系统中分离出2株好氧反硝化细菌,经过生理生化测定、16S rDNA鉴定以及同源性对比,确定SBR3-3是肺炎克雷伯氏菌,SBR3-4是植生拉乌尔菌,并对其生长特征、16S rDNA鉴定以及不同投加量、不同温度条件下脱氮性能进行了试验研究。试验结果表明,在25~30℃条件下2株菌对总氮去除率最高分别为70%和69%,NO_3~--N平均去除率为95%;在5~10℃条件下对总氮去除率最高分别为41%和43%,NO_3~--N最高去除率分别为57%和55%。在运行过程中,受C/N比和温度的影响,NO_2~--N有一定程度的积累。当SBR3-3和SBR3-4菌液的添加量为2 mL∶2mL时,对NO_3~--N和总氮的去除效果最好,总氮的去除率达到75%。相关研究成果对比来看,所筛选的2株菌在25~30℃条件下脱氮效果较好,具有良好的好氧反硝化效能。  相似文献   

13.
一株异养硝化好氧反硝化菌的筛选鉴定及其脱氮特性   总被引:6,自引:1,他引:6  
从长期施用农家肥的土壤中筛选出一株异养硝化好氧反硝化菌SQ2,经形态学和16S rRNA同源性分析,初步确定该菌株为不动杆菌Acinetobacter sp..实验研究了菌株SQ2对氨氮、硝酸盐和亚硝酸盐的去除特性,通过改变碳氮比、pH、接种量、碳源、温度和转速考察了菌株异养硝化条件,并探究了菌株耐高氨氮特性.结果表明,在28℃、180 r·min~(-1)好氧条件下,菌株SQ2对氨氮、亚硝态氮和硝态氮去除率分别达到100%、99.6%和96.9%,异养硝化体系中氮源降解速率、COD去除速率及菌株生长量均要高于好氧反硝化体系.菌株SQ2异养硝化最适条件为:碳氮比为12,pH为7~9,接种量为5%,碳源为琥珀酸钠,温度为28℃,转速为180~220 r·min~(-1).菌株SQ2具有良好的耐高氨氮特性,对实际高氨氮猪场废水脱氮效果良好,在高氨氮污水等生物处理方面具有良好的应用前景.  相似文献   

14.
曝气生物滤池好氧反硝化脱氮的研究   总被引:1,自引:3,他引:1  
邓康  黄少斌  胡婷 《环境科学》2010,31(12):2945-2949
采用某钢铁厂含氮废水,利用生物滤池工艺,研究了曝气生物滤池的挂膜、溶解氧、碳氮比对好氧反硝化脱氮的影响.结果表明,利用富含好氧反硝化菌的富集菌液进行挂膜,16 d基本完成挂膜,脱氮率90%.当溶解氧较低时(DO为1.5~4.2mg/L),随着溶解氧的增大,反硝化效率提高,其中以DO为3.5 mg/L时的效果最好,脱氮率为95.4%.随着曝气量继续增加,脱氮率有所下降,当DO为8.0 mg/L时,脱氮率仍有44.8%.可推断系统中有好氧反硝化菌,存在以O2作为电子受体的好氧反硝化现象.随着碳氮比(COD/N)增大,反硝化效果提高.当COD/N为6~7时,基本能够满足反硝化所需碳源.此时脱氮率大于96%,亚硝态氮在整个反应过程中几乎没有积累,COD去除率在85%左右.  相似文献   

15.
从经过高盐驯化的好氧颗粒污泥系统中筛选出一株异养硝化-好氧反硝化菌HY3-2,通过形态学观察及16S rDNA序列分析得出HY3-2为Klebsiella quasipneumoniae subsp.quasipneumoniae.研究了HY3-2对氨氮、硝酸盐和亚硝酸盐的去除特性,结果表明该菌具有良好的异养硝化和好氧反硝化功能,对氨氮、硝酸盐和亚硝酸盐的去除率分别达63.57%、88.11%和98.38%.对菌株脱氮性能研究表明:HY3-2以甘油为碳源,C/N为25,温度为20℃或30℃,转速为150r/min,盐度低于50g/L时,对100mg/L的NH4+-N去除效果良好,去除率达90.7%;以柠檬酸钠为碳源,C/N为25,温度为30℃,转速为150r/min,盐度低于15g/L时能进行良好的好氧反硝化作用,NO3--N去除率达99%以上.  相似文献   

16.
一株异养硝化-好氧反硝化菌的脱氮性能研究   总被引:6,自引:0,他引:6  
选用四因素三水平L9(34)正交试验表设计实验,通过测定对NO3--N(硝酸盐氮)和TIN的去除能力,研究碳源、碳氮比(ρ(CODCr)/ρ(N))、溶解氧含量(ρ(DO))以及pH 4种不同因素对一株恶臭假单胞菌好氧反硝化性能的影响. 结果表明,该菌株对NO3--N的最大还原率可达100%;对NO3--N还原率影响最大的因素为ρ(CODCr)/ρ(N),其次为ρ(DO),碳源和pH;对应的最优条件:碳源为柠檬酸三钠,ρ(CODCr)/ρ(N)15,转速为60 r/min,pH为6.5.对TIN去除率影响最大的因素为ρ(CODCr)/ρ(N),其次为碳源,ρ(DO)和pH; 对应的最优条件:碳源为柠檬酸三钠,ρ(CODCr)/ρ(N)15,转速为100 r/min,pH为6.5. 同时又对该菌株的异养硝化能力进行了测定发现,该菌株自身可实现同步硝化反硝化,其对氨氮的去除率可达60.91%,即该菌株可以独立完成生物脱氮的全部过程.   相似文献   

17.
贫营养好氧反硝化菌的分离鉴定及其脱氮特性   总被引:2,自引:0,他引:2  
为了分离贫营养好氧反硝化菌,研究其系统发育地位和脱氮特性,以期为微污染水库水体生物修复提供依据.从水库底层沉积物中,采用改良的富集驯化方法分离好氧反硝化菌,通过N-J法进行系统发育分析以及选择培养基研究其脱氮特性.初筛分离出196株好氧反硝化菌,其中14株为高效菌株(ZHF2、ZHF3、ZHF5、ZHF6、ZHF8、ZMF2、ZMF5、ZMF6、N299、G107、81Y、SF9、SF18和SXF14).经形态学,生理生化,和16S rRNA基因序列分析,ZHF3、ZHF5、ZHF6、ZMF2、G107、81Y、SF18和SXF14为不动杆菌(Acinetobacter sp.),ZHF2和ZHF8为新鞘脂菌属(Novosphingobium sp.),ZMF5为水杆菌属(Aquabacterium sp.),ZMF6为鞘脂单胞菌属(Sphingomonas sp.),N299为动胶杆菌属(Zoogloea sp.),SF9为代尔夫特菌属(Delftia sp.).其中菌株G107和81Y的反硝化效果最好,72h的硝氮去除率达到98.88% 和99.44%.并以G107和81Y为代表进行一系列的脱氮实验,结果显示出良好的短程反硝化、硝化和源水脱氮能力.贫营养好氧反硝化菌的分离,补充和丰富了好氧反硝化菌的种类,其高效的脱氮特性为低氮微污染水体的生物修复提供了技术支撑.  相似文献   

18.
1株海洋异养硝化-好氧反硝化菌的分离鉴定及其脱氮特性   总被引:7,自引:11,他引:7  
以海水为基质,采用传统的微生物分离纯化方法,从海底沉积物中分离筛选得到1株耐盐异养硝化-好氧反硝化细菌y5,经形态、生理生化特性以及16S rRNA基因序列分析,鉴定该菌为克雷伯氏菌(Klebsiella sp.).对其脱氮特性及影响因素进行了研究,结果表明,菌株y5的最佳碳源为柠檬酸三钠,最适p H值为7.0,最适C/N为17.菌株均能以NH4Cl、Na NO2和KNO3为唯一氮源进行反应,36 h的去除率分别为77.07%、64.14%和100%.3种氮源共存时,36 h的去除率达到100%.表明菌株y5在高盐废水中具有独立高效的异养硝化和好氧反硝化作用.  相似文献   

19.
异养硝化-好氧反硝化菌的筛选及脱氮性能的实验研究   总被引:17,自引:9,他引:8  
陈圳  王立刚  王迎春  李季  丁伟  任天志  李少朋 《环境科学》2009,30(12):3614-3618
通过极限稀释和显色培养基相结合筛选的方法,从畜禽养殖废水样品中筛选到1株同时具有异养硝化-好氧反硝化双重功能的细菌CPZ24.该菌株革兰氏染色呈阳性,杆状,菌落颜色为橙红色.经形态、生理生化特性,16S rDNA序列分析,初步鉴定该菌为嗜吡啶红球菌(Rhodococuus pyridinivorans).对该菌进行异养硝化功能和好氧反硝化功能进行研究,结果表明,在异养硝化过程中,该菌可将培养基中的氨氮全部去除,其中对总氮的去除率可达98.70%;在好氧反硝化过程中,该菌对硝酸盐氮的去除率可达到66.74%,总氮的去除率达到64.27%.此高效脱氮降解菌可实现自身同步硝化-反硝化脱氮功能,能够独立完成生物脱氮的全过程.  相似文献   

20.
从受氮污染浅层含水层介质中分离纯化得到1株高效异养硝化-好氧反硝化细菌XK51,经过菌落形态、生理生化特性及16S rDNA基因序列分析,鉴定该菌株为假单胞菌属恶臭假单胞菌(Pseudomonas Putida)。脱氮性能结果表明:XK51为兼性反硝化细菌,能在好氧或缺厌氧条件下高效反硝化脱氮,最大和平均反硝化速率分别为27.3,4.4 mg/(L·h),硝酸盐脱除率为95.3%;该菌株同时具有较高异养硝化能力,最大和平均硝化速率分别为4.2,1.4 mg/(L·h),氨氮脱除率为98.5%。XK51最佳碳源为柠檬酸三钠,适宜生长温度为28~35℃,最适温度为30℃;适宜生长pH为6.5~8.0,最适pH为7.0。XK51可同时进行异养硝化及同步硝化-反硝化,培养期间未出现明显亚硝酸盐和硝酸盐累积,在含氮污废水处理和地下水氮污染修复方面具有潜在工程应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号