首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A Water Quality Index (WQI) is a numeric expression used to evaluate the quality of a given water body and to be easily understood by managers. In this study, a modified nine-parameter Scottish WQI was used to assess the monthly water quality of the Douro River during a 10-year period (1992–2001), scaled from zero (lowest) to 100% (highest). The 98,000 km2 of the Douro River international watershed is the largest in the Iberian Peninsula, split between upstream Spain (80%) and downstream Portugal (20%). Three locations were surveyed: at the Portuguese–Spanish border, 350 km from the river mouth; 180 km from the mouth, where the river becomes exclusively Portuguese; and 21 km from the mouth. The water received by Portugal from Spain showed the poorest quality (WQI 47.3 ± 0.7%); quality increased steadily downstream, up to 61.7 ± 0.7%. In general, the water quality at all three sites was medium to poor. Seasonally, water quality decreased from winter to summer, but no statistical relationship between quality and discharge rate could be established. Depending on the location, different parameters were responsible for the episodic decline of quality: high conductivity and low oxygen content in the uppermost reservoir, and fecal coliform contamination downstream. This study shows the need to enforce the existing international bilateral agreements and to implement the European Water Quality Directive in order to improve the water quantity and quality received by the downstream country of a shared watershed, especially because two million inhabitants use the water from the last river location as their only source of drinking water.  相似文献   

2.
Fire occurrences and their sources were monitored in Emas National Park, Brazil (17°49′–18°28′S; 52°39′–53°10′W) from June 1995 to May 1999. The extent of burned area and weather conditions were registered. Forty-five fires were recorded and mapped on a GIS during this study. Four fires occurred in the dry winter season (June–August; 7,942 ha burned), all caused by humans; 10 fires occurred in the seasonally transitional months (May and September) (33,386 ha burned); 31 fires occurred in the wet season, of which 30 were caused by lightning inside the park (29,326 ha burned), and one started outside the park (866 ha burned). Wet season lightning fires started in the open vegetation (wet field or grassy savanna) at a flat plateau, an area that showed significantly higher fire incidence. On average, winter fires burned larger areas and spread more quickly, compared to lightning fires, and fire suppression was necessary to extinguish them. Most lightning fires were patchy and extinguished primarily by rain. Lightning fires in the wet season, previously considered unimportant episodes, were shown to be very frequent and probably represent the natural fire pattern in the region. Lightning fires should be regarded as ecologically beneficial, as they create natural barriers to the spread of winter fires. The present fire management in the park is based on the burning of preventive firebreaks in the dry season and exclusion of any other fire. This policy does not take advantage of the beneficial effects of the natural fire regime and may in fact reduce biodiversity. The results presented here stress the need for reevaluating present policies and management procedures concerning fire in cerrado conservation areas.  相似文献   

3.
We have made an attempt to understand the significance of physiographic factors viz., altitude, aspect, slope and soil characteristics in determining the structure, composition, growth behavior and distribution of Himalayan Silver Fir (Abies pindrow Spach.) through a comparative analysis of two temperate forests. The occurrence of highest density (370 and 225 ind/ha), importance value index (213.10 and 190.60) and total basal cover (TBC; 95.72 and 51.15 m2/ha) values along with the availability of higher organic carbon (6.53 and 4.47%), nitrogen (N; 0.73 and 0.44%) and potassium (K; 621 and 319 ppm) contents in the soils just beneath the hilltops (2,650–2,800 and 2,550–2,650 m asl), on steeper slopes (45°–50° and 42°–45°) and North-East aspects have revealed better growth of A. pindrow on both the sites. Stem density positively correlated with TBC (0.771), Shannon–Wiener diversity index (H′; 0.879), OC (0.601), N (0.758) and K (0.752), whereas TBC has shown significant positive relationship with H′ (0.894), K (0.793) and N (0.716). Similarly, H′ has also shown significant positive correlation with slope (0.721), K (0.855) and N (0.791). Interestingly, positive correlation of altitude with stem density (0.557) and of slope with TBC (0.608) was noticed in the distribution of A. pindrow individuals.  相似文献   

4.
The response of soil respiration to short-term environmental factors changes has been well studied, whereas the influences of long-term soil microclimate changes on soil respiration are still highly unclear, especially in tropical ecosystems. We hypothesized that soil carbon accumulation in southern China, especially in mature forest during recent years, partly resulted from reducing soil respiration rates. To test this hypothesis, we analyzed the temporal trends and variations of air temperature, soil temperature and soil water content (hereafter referred to as SWC), and then estimated soil respiration rates in the 1980s and 2000s with soil temperature and SWC by regression model in three subtropical forests which are at early-, mid-, and advanced-successional stages, respectively, in Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. The annual mean ambient air temperature increased by 1.03 ± 0.15°C in the last 50 years (1954–2007) in DNR. Rainfall amount in the corresponding period did not change significantly, but rainfall pattern changed remarkably in the last three decades (1978–2007). Soil temperature is correlated with ambient air temperature. The average SWC was 36.8 ± 8.4%, 34.7 ± 8.1% and 29.6 ± 8.1% in the 1980s, and then dropped sharply to 23.6 ± 2.9%, 20.5 ± 4.2% and 17.6 ± 3.9% in the 2000s, for the advanced, mid- and early-successional forests, respectively. Concurrent changes of soil temperature and SWC may have a negative effect on soil respiration rates for all three forests, implicated that soil respiration may have a negative feedback to regional climate change and carbon could be sequestered in subtropical forests in southern China.  相似文献   

5.
Several environmental protection policies have been implemented to prevent soil erosion and nonpoint source (NPS) pollutions in China. After severe Yangtze River floods, the “conversion cropland to forest policy” (CCFP) was carried out throughout China, especially in the middle and upper reaches of Yangtze River. The research area of the current study is located in Bazhong City, Sichuan Province in Yangtze River watershed, where soil erosion and NPS pollution are serious concerns. Major NPS pollutants include nitrogen (N) and phosphorus (P). The objective of this study is to evaluate the long-term impact of implementation of the CCFP on stream flow, sediment yields, and the main NPS pollutant loading at watershed level. The Soil and Water Assessment Tool (SWAT) is a watershed environmental model and is applied here to simulate and quantify the impacts. Four scenarios are constructed representing different patterns of conversion from cropland to forest under various conditions set by the CCFP. Scenario A represented the baseline, i.e., the cropland and forest area conditions before the implementation of CCFP. Scenario B represents the condition under which all hillside cropland with slope larger than 25° was converted into forest. In scenario C and D, hillside cropland with slope larger than 15° and 7.5° was substituted by forest, respectively. Under the various scenarios, the NPS pollution reduction due to CCFP implementation from 1996–2005 is estimated by SWAT. The results are presented as percentage change of water flow, sediment, organic N, and organic P at watershed level. Furthermore, a regression analysis is conducted between forest area ratio and ten years’ average NPS load estimations, which confirmed the benefits of implementing CCFP in reducing nonpoint source pollution by increasing forest area in mountainous areas. The reduction of organic N and organic P is significant (decrease 42.1% and 62.7%, respectively) at watershed level. In addition, this study also proves that SWAT modeling approach can be used to estimate NPS pollutants’ impacts of land use conversions in large watershed.  相似文献   

6.
Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to ‘fight the site.’  相似文献   

7.
We investigated the relationship between total annual flow of water in the Macquarie River and the extent of flooding in the northern part of the Macquarie Marshes and trends in waterbird populations from 1983 to 1993. The amount of water in the Macquarie River measured each year within the Macquarie Marshes explained about 86% of the variation in area flooded in the northern part of this wetland. This allowed use of long-term data on flow at Oxley, a gauge within the Macquarie Marshes, as an index to flooding. Annual flows at Oxley have decreased significantly for high and medium rainfall events in the catchment, despite no trend in rainfall between 1944 and 1993. The area flooded by large floods has contracted by at least 40–50% during the last 50 years (1944–1993). Water use has progressively increased upstream in the period, depriving the Macquarie Marshes of water: 51% of all water passing Dubbo each year, a gauge 100 km upstream, reached the Macquarie Marshes in the period 1944–1953, but by 1984–1993 this had declined to 21%. Numbers of species and density of waterbirds on the northern part of the Macquarie Marshes declined between 1983 and 1993. Three other wetlands, not affected by water abstractions, showed no declines. We believe the decline was due to wetland degradation as a result of decreased flooding. We estimated more than 88,000 waterbirds in the Macquarie Marshes in October 1984, establishing the site as an important wetland site in Australia. The extent and viability of this wetland will depend on maintaining or increasing the water supply.  相似文献   

8.
Agricultural sustainability is a vital parameter to be ascertained locally and globally if food security is to be achieved and maintained. Agricultural sustainability is the combined product of social, economic and ecological sustainability. It is also a function of temporal and spatial variations, a fact which indicates that area-specific sustainability indices need to be designed. We present here an Agricultural Sustainability Index (ASI) for rural eastern India and use it to calculate the ASI for 150 farms for three decades over a 60-year period, viz., 1950–1960, 1980–1990 and 2000–2010 for a representative Indian village of Gangapur (25°83′N, 85°65′E). The ASI was calculated using 30 variables, 10 each of social, economic and ecological sustainability. An extensive questionnaire-based survey was carried out to collect the relevant data. Our study reveals that over a 60-year period, ASI values do not show a statistically significant change. We conclude that the agricultural practices of the region have maintained sustainability so far although the scope for improvement in several broad areas identified by us is immense. Increased ecological literacy and better implementation of government policies, aiming at health, education and better scientist–farmer interactions, must target improved ASI values in coming decades.  相似文献   

9.
The impact of anthropogenic activities on the fluctuation of nutrients along the Densu River and its tributaries was studied. High concentrations of nutrients were observed in the study area but the river was found to be circumneutral and fresh with pH ranging between 6.54 and 7.84. The levels of NH4 +–N ranged between 0.21 and 2.1 mg L−1 with mean concentration of 1.19 ± 0.02 mg L−1 while that of nitrate is between 0.13 and 5.21 mg L−1 with a mean concentration of 2.07 ± 0.01 mg L−1. The levels of PO4 3−–P fluctuated within the range 0.54 and 1.04 mg L−1 with a mean of 0.84 ± 0.01 mg L−1. The Densu River Basin was also found to be with organic matter with depleted dissolved oxygen. The river recorded high BOD values ranging from 6.91 to 18.8 mg L−1. Concentration of nutrients and organic pollutants increased as a consequence of anthropogenic inputs particularly from domestic, agricultural and municipal sources. The highly impaired sites were those located close to the urbanized, agricultural and high-density residential areas. The relatively high concentration of nitrate and phosphate in the river indicated that it was quite eutrophic.  相似文献   

10.
Aibi Lake in north Xinjiang is a typical lake of the arid area, but with a peculiar wetland–arid area ecosystem. Due to the climate becoming drier and the disturbance of human activities, the eco-environment of Aibi Lake catchment has degraded. It was found in our study that there were spatial–temporal changes of vegetation cover, plant species, and soil physical and chemical properties in the catchment. In the upper section of alluvial–fluvial plains, the desertified steppe of Stipa and Artemisia spp. is developed with vegetation cover of some 50%. Haloxylon ammodendron desert occupies the lower section with vegetation cover of some 60%. In these regions with an intensive human disturbance, vegetation has degraded into herb vegetation of annual plant complexes. On the margins of the alluvial–fluvial fans, the lakeshore, and the surrounding regions where the river mouths join the lake, different azonal vegetation—Phragmites communis marsh, Phragmites communis meadow, and Tamarix shrubs—have developed with a vegetation cover of some 80%. On heavier, salinized land, succulent halophyte desert vegetation dominated by Halocnemum strobilaceum has formed with a fractional canopy cover of 10–15%. Haloxylon persicum, Aristida pennata, and other species with a vegetation cover of 30–50% grow in the sand desert zone on the periphery in the lake. In contrast with the 1950s, the vegetation cover around the lakebed and at the river deltas has slightly increased; however, the vegetation cover around the periphery of the lake has decreased and the plant species have still degraded. The surface soils on the windward area and the dried lakebed that have lost vegetation protection have become coarser, whereas the land on the leeward side of the lake has accumulated fine particles. In contrast with the 1980s, soil organic matter has declined markedly. The analyses of climatic data show that the number of days of drifting dust in Jinghe County and Bole City increased in the last 20 years. In the investigation, we found that intensively developed land, the bare lakebed, and abandoned cultivated land provided a great deal of material for drifting dust. In conclusion, we consider the eco-environmental degradation resulting from the inappropriate human activities and put forward recommendations for land-use adjustment and dust control.  相似文献   

11.
Through interpreting Landsat TM images, this study analyzes the spatial distribution of rural settlements in China in 2000. It calculates rural residential land percentage for every 1-km2 cell. The entire country is divided into 33 regions to investigate the spatio-temporal dynamic patterns of rural residential land during the 1990s. According to the remote sensing survey, the rural residential land increased by 7.88 × 105 ha in the 1990s. The increment of rural residential land was 0.55 million ha in 1990–1995 and 0.23 million ha in 1995–2000. In 1990–1995, rural residential land increased dramatically in the eastern regions such as the Yangtze River Delta, Pearl River Delta, and North China Plain, accounting for 80.80% of the national growth; the expansion in the western regions was much more moderate. In 1995–2000, the expansion of rural residential land in eastern regions slowed, accounting for only 58.54% of the increase at the national level, whereas the expansion in the western regions accelerated. Rapid rural residential development resulted from increasing home construction and the limited control on rural land. The great regional disparity reflected the regional economic development and land-use policy change. Our finding shows that nearly 60% of the rural residential area came from cropland.  相似文献   

12.
Sodium monofluoroacetate (1080) is a mammalian pesticide used in different parts of the world for the control of mammalian pest species. In New Zealand it is used extensively and very successfully as a conservation management tool for the control of brushtail possums (Trichosurus vulpecula) – an introduced marsupial that has become a substantial agricultural and conservation management pest. Possums pose a threat to cattle farming in New Zealand as they are a vector for bovine tuberculosis. In protected natural areas, possum browsing is responsible for large scale defoliation of native vegetation. As with many other pesticides, there has been some degree of popular concern about the use of this toxin and its safety, with particular reference to non-target effects. These concerns have been associated with potential non-target effects on human health, and the health of animals of recreational value (e.g., hunting dogs and game animals). This has led to the development of a strong “anti-1080” lobby in New Zealand. In contrast, this study encompasses a science-based risk analysis focusing on the potential risks to non-target native wildlife with a particular focus on chronic toxicity. It finds that there is evidence that 1080 may have endocrine disrupting capabilities (with potential relevance for non-target wildlife) but that this still needs more detailed investigation. This can be clarified by further targeted research. Further research is also needed to test the degradation rates of 1080 and its breakdown products at ecologically-relevant temperatures (i.e., winter stream temperatures – below 11 °C). Such research may demonstrate that some adjustment to 1080 risk management is warranted in New Zealand, or it may help to put to rest the current controversy over the use of this cost effective conservation management tool.  相似文献   

13.
Construction of six large dams and reservoirs on the Missouri River over the last 50–75 years has resulted in major landscape changes and alterations in flow patterns, with implications for riparian forests dominated by plains cottonwood (Populus deltoides). We quantified changes in land cover from 1892–1950s and the 1950s–2006 and the current extent and age structure of cottonwood forests on seven segments (two reservoir and five remnant floodplain) comprising 1127 km (53 %) of the unchannelized upper two-thirds of the Missouri River. Riparian forest area declined by 49 %; grassland 61 %; shrubland 52 %; and sandbar habitat 96 %; while agricultural cropland increased six-fold and river/reservoir surface area doubled from 1892 to 2006. Net rates of erosion and accretion declined between the 1892–1950s and 1950s–2006 periods. Accretion exceeded erosion on remnant floodplain segments, resulting in declines in active channel width, particularly in 1950s–2006. Across all study segments in 2006, most cottonwood stands (67 %) were >50 years old, 22 % were 25–50 years old, and only 10 % were <25 years old. Among stands <50 years old, the higher proportion of 25–50 year old stands represents recruitment that accompanied initial post-dam channel narrowing; while declines in sandbar and shrubland area and the low proportion of stands <25 years old suggest declines in geomorphic dynamism and limited recruitment under recent river management. Future conservation and restoration efforts should focus both on limiting further loss of remnant cottonwood stands and developing approaches to restore river dynamics and cottonwood recruitment processes.  相似文献   

14.
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil–water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30–40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.  相似文献   

15.
The potential of the epigeic earthworm Eisenia fetida to stabilize sludge␣(generated from a distillation unit of the sugar industry) mixed with cow dung, in different proportions i.e. 20% (T1), 40% (T2), 60% (T3) and 80% (T4) has been studied under laboratory conditions for 90 days. The␣ready vermicompost was evaluated for its’ different physico-chemical parameters using standard methods. At the end of experiment, all vermibeds expressed a significant decrease in pH (7.8–19.2%) organic C (8.5–25.8%) content, and an increase in total N (130.4–170.7%), available P (22.2–120.8%), exchangeable K (104.9–159.5%), exchangeable Ca (49.1–118.1%), and exchangeable Mg (13.6–51.2%) content. Overall, earthworms could maximize decomposition and mineralization efficiency in bedding with lower proportions of distillery sludge. DTPA extractable metal reduction in substrate was recorded between the ranges of 12.5–38.8% for Zn, 5.9–30.4% for Fe, 4.7–38.2% for Mn and 4.5–42.1% for Cu. Maximum values for the mean individual live weight (809.69 ± 20.09 mg) and maximum individual growth rate (mg wt. worm−1 day−1) (5.81 ± 0.18) of earthworms was noted in T1 treatment, whereas cocoon numbers (69.0 ± 7.94) and individual reproduction rate (cocoon worm−1 day−1) (0.046 ± 0.002) was highest in T2 treatment. Earthworm mortality tended to increase with increasing proportion of distillery sludge, and maximum mortality in E. fetida was recorded for the T4 (45.0 ± 5.0) treatment. Results indicate that vermicomposting might be useful for managing the energy and nutrient rich distillery sludge on a low-input basis. Products of this process can be used for sustainable land restoration practices. The feasibility of worms to mitigate the toxicity of metals also reduces the possibility of soil contamination, which has been reported in earlier studies during direct field application of industrial wastes.  相似文献   

16.
This study focused on using scale inhibitors for calcium sulfate that are not only highly effective, but also comply with present restrictive environmental control legislations. In this respect, some biodegradable compounds-based biopolymers, such as carboxymethyl starch (CMS), carboxymethyl cellulose (CMC), and chitosan (Ch), were evaluated at temperatures 90–95 and 130°C. The results obtained were compared with the performance of polyaspartic acid (PAA), which is well known in this application, as well as other chelating synthetic polymers (polyacrylamide and amphoteric polyacrylamide). The role of the degree of substitution (DS) of carboxymethylated biopolymer and the charge density of polyacrylamide (AmPAM-30 and AmPAM-50) on inhibition performance of scale were also examined. The synergistic effect of PAA with investigated inhibitors was studied for economic and environmental purposes. The results revealed that both the degree of substitution of carboxymethylated biopolymers and charge density of polyacrylamide have a profound effect on improving the performance of the investigated scale inhibitors. The efficiency values were correlated to the thermal degradation behavior (TGA) of biopolymers. PAA had the highest synergistic effect of all investigated inhibitors, where the inhibition efficiency was found to range from 98% to 100%, at a temperature of 130°C, with low doses of both PAA (2 ppm) together with biopolymers. This efficiency is observed using 20–40 ppm of PAA. The synergistic effect of PAA (2 ppm) also showed enhancement of the performance of low doses of polyacrylamides (5 ppm) in maintaining soluble Ca2+ in solutions, increasing the efficiency from ∼57% to ∼100%, as well as its ecotoxicological property.  相似文献   

17.
A study of a watershed planning process in the Cache River Watershed in southern Illinois revealed that class divisions, based on property ownership, underlay key conflicts over land use and decision-making relevant to resource use. A class analysis of the region indicates that the planning process served to endorse and solidify the locally-dominant theory that landownership confers the right to govern. This obscured the class differences between large full-time farmers and small-holders whose livelihood depends on non-farm labor. These two groups generally opposed one another regarding wetland drainage. Their common identity as “property owner” consolidated the power wielded locally by large farmers. It also provided an instrument – the planning document – for state and federal government agencies to enhance their power and to bring resources to the region. The planning process simultaneously ameliorated conflicts between government agencies and the large farmers, while enhancing the agencies’ capacity to reclaim wetlands. In this contradictory manner, the plan promoted the environmental aims of many small-holders, and simultaneously disempowered them as actors in the region’s political economy. An erratum to this article is available at .  相似文献   

18.
A case study was conducted on the forest ecosystem in the Baishuijiang River basin of China to reveal the influences of environmental factors and human disturbance on the floristic characteristics and biodiversity patterns. Field surveys of the floristic composition, environmental factors, and disturbance factors were conducted along an elevation gradient, and the relationships between biodiversity pattern and environmental factors were analyzed using CCA (canonical correspondence analysis). The results showed that the floristic composition of higher plants consisted of 197 families, 796 genera, 2165 species, 19 subspecies, 239 varietas, and 12 forma, and it was characterized by the multi-geographic composition and by the transition from tropical to temperate zones. Along an elevation gradient, the variations in α and β diversity were best described by a bimodal curve, and the peak values occurred at middle elevations. The CCA indicated that the elevation had the greatest influence on the biodiversity pattern, followed by the topographic index, slope direction, slope, slope position, slope shape, and vegetation coverage. In addition, human disturbance has greatly impacted the floristic composition and biodiversity patterns, and the biodiversity indices were higher with intermediate disturbance at middle elevations compared to higher and lower disturbances at low and high elevations, respectively. This reflected a disturbance–diversity pattern and thus revealed the obvious importance to maintain the intermediate disturbance for biodiversity conservation.  相似文献   

19.
In this study, we demonstrate a physically based semi-Lagrangian water temperature model known as the River Basin Model (RBM) coupled with the Variable Infiltration Capacity (VIC) hydrological model and Weather Research & Forecasting Model in the Mississippi River Basin (MRB). The results of this coupling compare favorably with observed water temperature data available from six river gages located in the MRB. Further sensitivity analysis indicates that the mean water temperatures may increase by 1.3, 1.5, and 1.8°C in northern, central, and southern MRB zones under a hypothetical uniform air temperature increase of 3.0°C. If air temperatures increase uniformly by 6.0°C in this scenario, then water temperatures are projected to increase by 3.3, 3.5, and 4.0°C. Lastly, downscaled air temperatures from a global climate model are used to drive the coupled VIC and RBM model from 2020 to 2099. Average stream temperatures from 2020 to 2099 increase by 1.0 to 8.0°C above 1950 to 2010 average water temperatures, with non-uniform increases along the river. In some portions of the MRB, stream temperatures could increase above survival thresholds for several native fish species, which are critical components of the stream ecosystem. In addition, increased water temperatures interact with nutrient loadings from sources throughout the MRB, which is expected to exacerbate harmful algal blooms and dead zones in the Gulf of Mexico.  相似文献   

20.
Increased water-dependent development and utilization have led to significant environmental and hydrological degradation of the Tarim River in western China and its dependent ecosystems. Between the 1950s and 1970s, 350 km of the lower reaches were drained and between 1960 and 1980 the water-table fell from between −2 and −3 m to between −8 and −10 m. Subsequently, riparian ecosystems were seriously degraded. In 2000, the Chinese government launched a program to restore the lower reaches of the river. Four environmental flows of 1034×106 m3 were released from 2000 to 2002. This paper interprets and discusses the ecological significance of changes following the releases and identifies the relationship between water-table dynamics and vegetation responses. Short-term objectives for river restoration are proposed with possible monitoring parameters suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号