首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural attenuation of mecoprop has been studied by determining changes in enantiomeric fraction in different redox environments down gradient from a landfill in the Lincolnshire limestone. Such changes could be due to differential metabolism of the enantiomers, or enantiomeric inversion. In order to confirm the processes occurring in the field, microcosm experiments were undertaken using limestone acclimatised in different redox zones. No biodegradation was observed in the methanogenic, sulphate-reducing or iron-reducing microcosms. In the nitrate-reducing microcosm (S)-mecoprop did not degrade but (R)-mecoprop degraded with zero order kinetics at 0.65 mg l(-1)day(-1) to produce a stoichiometric equivalent amount of 4-chloro-2-methylphenol. This metabolite only degraded when the (R)-mecoprop disappeared. In aerobic conditions (S)- and (R)-mecoprop degraded with zero order kinetics at rates of 1.90 and 1.32 mg l(-1)day(-1) respectively. The addition of nitrate to dormant iron-reducing microcosms devoid of nitrate stimulated anaerobic degradation of (R)-mecoprop after a lag period of about 20 days and was associated with the production of 4-chloro-2-methylphenol. Nitrate addition to sulphate-reducing/methanogenic microcosms did not stimulate mecoprop degradation. However, the added nitrate was completely utilised in oxidising sulphide to sulphate. There was no evidence for enantiomeric inversion. The study reveals new evidence for fast enantioselective degradation of (R)-mecoprop under nitrate-reducing conditions.  相似文献   

2.
We determined how a cleaner and a dispersant affected hydrocarbon biodegradation in wetland soils dominated by the plant Panicum hemitomon, which occurs throughout North and South America. Microcosms received no hydrocarbons, South Louisiana crude, or diesel; and no additive, a dispersant, or a cleaner. We determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydrocarbons in water and sediment fractions 1, 7, 31, and 186 days later. Disappearance was distinguished from biodegradation via hopane-normalization. After 186 days, TPH disappearance ranged from 24% to 97%. There was poor correlation among the four TPH measures, which indicated that each quantified a different suite of hydrocarbons. Hydrocarbon disappearance and biodegradation were unaltered by these additives under worse-case scenarios. Any use of these additives must generate benefits that outweigh the lack of effect on biodegradation demonstrated in this report, and the increase in toxicity that we reported earlier.  相似文献   

3.
In the present study, 5 isolates of brown-rot fungi were used for fungal bioprocessing (FB) of chromated copper arsenate (CCA)-treated wood wastes: Antrodia vaillantii SEL8501, Fomitopsis palustris TYP0507 and TYP6137, and Crustoderma sp. KUC8065 and KUC8611. The isolates showed notable capacity for the degradation of treated wood and removal of CCA components via the American Wood Protection Association soil block test. Among them, Crustoderma sp. KUC8611 effectively decayed the treated wood, causing a mass loss of up to 60%. F. palustris caused extensive leaching of CrO3 of up to 79% and As2O5 of up to 87%, but only moderate leaching of CuO of up to 50%. This high capacity for removal of CrO3 and As2O5 showed a strong logarithmic relationship with the amount of oxalic acid produced in the decayed wood. The majority of metals removed from treated wood during the decay process were deposited in the soil and feeder strip. Further investigation will be required to establish the capability of selected fungi for FB of full-sized lumber treated with CCA.  相似文献   

4.
Environmental Science and Pollution Research - Harmful cyanobacterial blooms (HCB) have severe impacts on marine and freshwater systems worldwide. They cause oxygen depletion and produce potent...  相似文献   

5.
Metals have been reported to inhibit organic pollutant biodegradation; however, widely varying degrees and patterns of inhibition have been reported. To investigate the roles of medium composition and metal bioavailability on these different degrees and patterns of inhibition, we assessed the impact of cadmium on naphthalene biodegradation by a newly isolated strain of Comamonas testosteroni in three chemically-defined minimal salts media (MSM): Tris-buffered MSM, PIPES-buffered MSM, and Bushnell-Haas medium. Cadmium (total concentrations of 100 and 500 microM) inhibited biodegradation in each medium. Degrees of inhibition were different in each medium. Cadmium was most inhibitory in PIPES-buffered MSM and least inhibitory in Bushnell-Haas. For example, in Bushnell-Haas medium, 100 microM cadmium reduced the cell yield more than 4-fold compared to controls not containing cadmium. The same concentration of cadmium completely inhibited growth in PIPES-buffered MSM. No difference in inhibition was observed in any medium when cadmium was added 24 h before inoculation rather than when added within one minute of inoculation. Two patterns of inhibition were observed. Inhibition occurred in a dose dependent pattern in Tris- and PIPES-buffered MSM and in a non-dose dependent pattern in Bushnell-Haas. Specifically, in Bushnell-Haas, 100 microM total cadmium extended the lag phase by 23+/-8.66 h, whereas 500 microM did not extend the lag phase. Soluble, ionic cadmium (Cd2+) concentrations were measured and modeled in each medium to assess cadmium bioavailability. In media containing 500 microM total cadmium, bioavailability was highest in Tris- and PIPES-buffered MSM and lowest in Bushnell-Haas. In Bushnell-Haas, cadmium bioavailability was initially higher in the 500 microM treatments (196+/-21.2 microM) than in the 100 microM treatments (78.2+/-2.04 microM); however, after 12 h, bioavailability was higher in the 100 microM treatments (56.4+/-24.8 micro) than the 500 microM treatments (13.3+/-1.2 microM). These data suggest that the type of medium determines the degrees and patterns by which metals inhibit biodegradation and emphasize the importance of coupling metal toxicity and bioavailability data.  相似文献   

6.
在前期研究中发现,纺锤芽孢杆菌(Bacillus fusiformis,BFN)可以用于降解水溶液的萘,为了解其降解过程,发现BFN菌生长量随着溶液中的萘的含量增加而提高。其中,萘的含量分别是30、50、100和200 mg/L时,BFN的生物量OD600值分别为0.057、0.081、0.126和0.193;降解培养基溶液COD的去除率分别为59.4%、65.3%、69.2%和70.6%,说明BFN菌在生长的过程中利用萘作为碳源。同时,动力学拟合发现,对不同含量萘的降解过程都符合一级降解动力学方程,且BFN菌的生长过程满足逻辑斯蒂方程。扫描电镜图表明,BFN菌在萘的存在下生长得更好。紫外光谱显示波长为276 nm的萘的吸收峰在降解后下降很多。红外光谱数据则表明,降解液中有2组新的吸收峰出现:一组出现在2 878、2 930和2 968 cm-1处,说明在萘的降解过程中有新的羧酸类生成;另一组出现在3 438、3 667和3 731 cm-1处有新的酚类物质生成。  相似文献   

7.
Despite numerous reviews suggesting that microbial biosensors could be used in many environmental applications, in reality they have failed to be used for which they were designed. In part this is because most of these sensors perform in an aqueous phase and a buffered medium, which is in contrast to the nature of genuine environmental systems. In this study, a range of non-exhaustive extraction techniques (NEETs) were assessed for (i) compatibility with a naphthalene responsive biosensor and (ii) correlation with naphthalene biodegradation. The NEETs removed a portion of the total soil naphthalene in the order of methanol > HPCD > βCD > water. To place the biosensor performance to NEETs in context, a biodegradation experiment was carried out using historically contaminated soils. By coupling the HPCD extraction with the biosensor, it was possible to assess the fraction of the naphthalene capable of undergoing microbial degradation in soil.  相似文献   

8.
9.
Choi JH  Kim YH  Choi SJ 《Chemosphere》2007,67(8):1551-1557
The reductive dechlorination and biodegradation of 2,4,6-trichlorophenol (2,4,6-TCP) was investigated in a laboratory-scale sequential barrier system consisting of a chemical and biological reactive barrier. Palladium coated iron (Pd/Fe) was used as a reactive barrier medium for the chemical degradation of 2,4,6-TCP, and a sand column seeded with anaerobic microbes was used as a biobarrier following the chemical reactive barrier in this study. Only phenol was detected in the effluent from the Pd/Fe column reactor, indicating that the complete dechlorination of 2,4,6-TCP was achieved. The residence time of 30.2-21.2h was required for the complete dechlorination of 2,4,6-TCP of 100 mg l(-1) in the column reactor. The surface area-normalized rate constant (k(SA)) is 3.84 (+/-0.48)x10(-5)lm(-2)h(-1). The reaction rate in the column tests was one order of magnitude slower than that in the batch test. In the operation of the biobarrier, about 100 microM of phenol was completely removed with a residence time of 7-8d. Consequently, the dechlorination prior to biodegradation turns out to increase the overall treatability. Moreover, the sequential permeable reactive barriers, consisting of iron barrier and biobarrier, could be recommended for groundwater contaminated with toxic organic compounds such as chlorophenols.  相似文献   

10.
Virtapohja J  Alen R 《Chemosphere》1999,38(1):143-154
Laboratory-scale microcosm tests were carried out in sea water with and without sediment to investigate the importance of ultraviolet (UV) light and microbes in the temperature-dependent degradation of metal complexes of ethylenediaminetetraacetic acid (EDTA). After 17 weeks, 44% and 48% of the original EDTA (initial concentration 385 microg/L) were converted at 10 degrees C and 22 degrees C, respectively. The degradation was more influenced by UV light than by sediment microbes, although the latter were very important. At both temperatures, absorption of EDTA to the sediment phase reached a maximum in the initial stage of the experiments (<4 weeks): at 10 degrees C about 4% and at 22 degrees C about 7% of the original EDTA.  相似文献   

11.
Polymer biodegradation: mechanisms and estimation techniques   总被引:2,自引:0,他引:2  
Within the frame of the sustainable development, new materials are being conceived in order to increase their biodegradability properties. Biodegradation is considered to take place throughout three stages: biodeterioration, biofragmentation and assimilation, without neglect the participation of abiotic factors. However, most of the techniques used by researchers in this area are inadequate to provide evidence of the final stage: assimilation. In this review, we describe the different stages of biodegradation and we state several techniques used by some authors working in this domain. Validate assimilation (including mineralisation) is an important aspect to guarantee the real biodegradability of items of consumption (in particular friendly environmental new materials). The aim of this review is to emphasise the importance of measure as well as possible, the last stage of the biodegradation, in order to certify the integration of new materials into the biogeochemical cycles. Finally, we give a perspective to use the natural labelling of stable isotopes in the environment, by means of a new methodology based on the isotopic fractionation to validate assimilation by microorganisms.  相似文献   

12.
Closed-system microcosms were used to study factors affecting the fate of selenium (Se) in aquatic systems. Distribution and bioaccumulation of Se varied among sediment types and Se species. A mixture of dissolved (75)Se species (selenate, selenite and selenomethionine) was sorbed more rapidly to fine-textured, highly organic pond sediments than to sandy riverine sediments. Sulfate did not affect the distribution and bioaccumulation of (75)Se over the range 80-180 mg SO(4) liter(-1). When each Se species was labeled separately, selenomethionine was lost from the water column more rapidly than selenate or selenite. Selenium lost from the water column accumulated primarily in sediments, but volatilization was also an important pathway for loss of Se added as selenomethionine. Loss rates of dissolved Se residues were more rapid than rates reported from mesocosm and field studies, suggesting that sediment: water interactions are more important in microcosms than in larger test systems. Daphnids accumulated highest concentrations of Se, followed by periphyton and macrophytes. Selenium added as selenomethionine was bioaccumulated preferentially compared to that added as selenite or selenate. Organoselenium compounds such as selenomethione may thus contribute disproportionately to Se bioaccumulation and toxicity in aquatic organisms.  相似文献   

13.
The biodegradation of nitrobenzene (NB) and 2,4-dinitrophenol (DNP) in NB plant wastewater has been studied using acclimated activated sludge in a batch bioreactor. The gas chromatographic (GC) monitoring shows simultaneous utilization of these two substrates, and both NB and DNP were ultimately biodegraded. The primary and ultimate biodegradation rates using GC and COD methods, respectively, are compared and reported.  相似文献   

14.
苯胺生物降解极限的研究   总被引:1,自引:1,他引:1  
介绍了有机物生物降解极限浓度的理论,推导得到了极限浓度的计算公式。以苯胺为目标有机物,利用经过驯化的活性污泥,通过测定其生物降解动力学参数值Ks、μmax、qmax、Ymax等计算得到了其生物降解极限质量浓度为0.025mg/L,并通过摇床试验对极限浓度进行了验证。研究表明,作为微生物生长的唯一碳源和能源,有机物生物降解存在极限浓度。  相似文献   

15.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

16.
This study aimed to determine the occurrence, abundance, and fate of nine important antimicrobial resistance genes (ARGs) (sul1, sul2, tetB, tetM, ermB, ermF, fexA, cfr, and Intl1) in the simulated soil and pond microcosms following poultry and swine manure application. Absolute quantitative PCR method was used to determine the gene copies. The results were modeled as a logarithmic regression (N?=?mlnt?+?b) to explore the fate of target genes. Genes sul1, Intl1, sul2, and tetM had the highest abundance following the application of the two manure types. The logarithmic regression model fitted the results well (R 2 values up to 0.99). The reduction rate of all genes (except for the genes fexA and cfr) in manure-pond microcosms was faster than those in manure-soil microcosms. Importantly, sul1, intl1, sul2, and tetM had the lowest reduction rates in all the samples and the low reduction rates of tetM was the first time to be reported. These results indicated that ARG management should focus on using technologies for the ARG elimination before the manure applications rather than waiting for subsequent attenuation in soil or water, particularly the ARGs (such as sul1, intl1, sul2, and tetM investigated in this study) that had high abundance and low reduction rate in the soil and water after application of manure.  相似文献   

17.
Removal of pyrene from contaminated sediments by mangrove microcosms   总被引:19,自引:0,他引:19  
Ke L  Wang WQ  Wong TW  Wong YS  Tam NF 《Chemosphere》2003,51(1):25-34
The potential of mangrove wetland systems to remove pyrene from surface- or bottom-contaminated sediments was investigated by microcosm studies. The performance of two mangrove plant species, Kandelia candel and Bruguiera gymnorrhiza in pyrene removal was also compared. During the six-months experimental period, the growth of both species in the surface-contaminated microcosms was not significantly different from that in the bottom-contaminated ones, and was comparable to the control (without any pyrene contamination). At the end of six-months treatment, pyrene concentrations in contaminated sediments declined from an initial 3 microg g(-1) to less than 0.4 microg g(-1), indicating that pyrene was successfully removed by mangrove microcosms. Around 96.4% and 92.8% pyrene in microcosms planted with K. candel were removed from the surface- and bottom-contaminated sediments, respectively. The removal percentages were slightly lower in microcosms planted with B. gymnorrhiza. Significant accumulation of pyrene in roots was only found in microcosms having bottom-contaminated sediments, and pyrene concentrations were 3.05 microg g(-1) and 4.50 microg g(-1) in roots of K. candel and B. gymnorrhiza, respectively. These values were much higher than that in control microcosms (without pyrene contamination, root pyrene concentrations were 0.27 microg g(-1) for K. candel and 0.34 microg g(-1) for B. gymnorrhiza) and in microcosms with contaminated sediments placed at the surface layer. Nevertheless, the overall contribution of root accumulation and plant uptake to the removal of pyrene from contaminated sediments was insignificant.  相似文献   

18.
Kao CM  Chen SC  Su MC 《Chemosphere》2001,44(5):925-934
The industrial solvent trichloroethylene (TCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system containing oxygen-organic releasing material to enhance the aerobic cometabolism of TCE in situ. The oxygen-organic material, which contains calcium peroxide and peat, is able to release oxygen and primary substrates continuously upon contact with water. Batch experiments were conducted to design and identify the components of the oxygen-organic releasing material, and evaluate the oxygen and organic substrate (presented as COD equivalent) release from the designed oxygen-organic material. The observed oxygen and chemical oxygen demand (COD) release rates were approximately 0.0246 and 0.052 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of TCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an oxygen-organic material column, followed by two consecutive soil columns. Aerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for TCE biodegradation. Simulated TCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for TCE and other indicating parameters (e.g., pH, dissolved oxygen). Results show that the decreases in TCE concentrations were observed over a 4-month operating period. Up to 99% of TCE removal efficiency was obtained in this passive system. Results indicate that the continuously released oxygen and organic substrates from the oxygen-organic materials enhanced TCE biotransformation. Thus, the biobarrier treatment scheme has the potential to be developed into an environmentally and economically acceptable remediation technology.  相似文献   

19.
20.
Environmental Science and Pollution Research - Constructed wetland microcosms (CWMs) are artificially designed ecosystem which utilizes both complex and ordinary interactions between supporting...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号