首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ensemble of corrosion indices was combined to study the corrosion tendency of the drinking water supply at the University of Benin, Nigeria. The experimental results were analysed in terms of three corrosion indices-Langelier Index, Ryznar Index and Larson–Skold Index. According to the evaluation, the Langelier Index ranged from −5.569 to −3.684, Ryznar Index was between 13.340 and 16.418 while the Larson–Skold Index was between 1.191 and 31.750. Results indicated that the water may be corrosive. A regression of these indices on iron concentration (ppm) showed that Langelier Index, Ryznar Index and Larson–Skold Index have R 2 of 0.5868, 0.6577 and 0.7063, respectively. The positive correlation between iron levels and the corrosion indices suggested that iron levels were directly related to increase in corrosion tendency.  相似文献   

2.
Future changes in water supply are likely to vary across catchments due to a river basin's sensitivity to climate and land use changes. In the Santiam River Basin (SRB), Oregon, we examined the role elevation, intensity of water demands, and apparent intensity of groundwater interactions, as characteristics that influence sensitivity to climate and land use changes, on the future availability of water resources. In the context of water scarcity, we compared the relative impacts of changes in water supply resulting from climate and land use changes to the impacts of spatially distributed but steady water demand. Results highlight how seasonal runoff responses to climate and land use changes vary across subbasins with differences in hydrogeology, land use, and elevation. Across the entire SRB, water demand exerts the strongest influence on basin sensitivity to water scarcity, regardless of hydrogeology, with the highest demand located in the lower reaches dominated by agricultural and urban land uses. Results also indicate that our catchment with mixed rain‐snow hydrology and with mixed surface‐groundwater may be more sensitive to climate and land use changes, relative to the catchment with snowmelt‐dominated runoff and substantial groundwater interactions. Results highlight the importance of evaluating basin sensitivity to change in planning for planning water resources storage and allocation across basins in variable hydrogeologic settings.  相似文献   

3.
ABSTRACT: A model was developed to evaluate the cost-effectiveness of alternative “best management practice” (BMP) implementation schemes on two agricultural basins in Florida. The model selectively applies BMPs throughout the basin on a field by field basis, estimates the associated costs, and predicts the relative water quality improvement (reductions in nitrogen and phosphorus). The water quality model links field scale simulation (for detailed BMP evaluation) with basin delivery and attenuation functions to predict the basin-wide effects of any combination of BMPs. Fifteen BMP scenarios were evaluated to aid in prioritizing BMPs for implementation in these basins. Applying the maximum level of BMPs is estimated to cost around $1.2 million (annually), while the four most cost-effective BMPs would cost only one quarter as much, yet are projected to provide approximately 90 percent of the water quality improvement.  相似文献   

4.
During recent decades, Lake Koronia has undergone severe degradation as a result of human activities around the lake and throughout the basin. Surface and groundwater abstraction and pollution from agricultural, industrial, and municipal sources are the major sources of degradation. Planning a restoration project was hampered by lack of sufficient data, with gaps evident in both spatial and temporal dimensions. This study emphasized various remote sensing and geographic information system techniques, such as digital image processing and geographic overlay, to fill gaps using satellite imagery and other spatial environmental, hydrological, and hydrogeological data in the process of planning the restoration of Lake Koronia, following Ramsar guidelines. Current and historical remote sensing data were used to assess the current status and level of degradation, set constraints and define the ideotype for the restoration, and, finally, define and select the best restoration scenario.  相似文献   

5.
This study focuses on investigating the quality of groundwater for irrigation and drinking water purposes. Spatial distribution of physicochemical and microbiological parameters was assessed from samples collected from springs, hand‐dug wells, and boreholes found the Guna Tana landscape. A total of 70 samples were considered for physical, chemical, and bacteriological water quality determination. The results revealed that most of the groundwater quality index (WQI) values lie between good and excellent. The maximum, minimum, mean, and standard deviation of each water quality parameter were prepared for evaluating groundwater quality. According to the WQI values, more than 83% of the water samples were classified as excellent water for drinking. More than 92% of the water samples showed low sodium hazards for irrigation and about 48% and 46% of the water samples were classified as within the excellent and good water classes for irrigation based on their electrical conductance levels. Therefore, the groundwater that is found in the Guna Tana landscape could be used for drinking and irrigation purposes without any advanced treatment.  相似文献   

6.
以新疆喀什噶尔河流域克孜河卡拉贝利水利枢纽工程为例,采用水均衡模型计算方法,从工程建成后区域荒漠河岸林草耗水量变化、荒漠河岸林草区地下水位变化情况、工程建成后洪水过程变化等方面分析工程建设对工程影响区荒漠河岸林草的影响。评价结果显示,工程建成后,与现状相比荒漠河岸林草植被的耗水量有所增加,区域平均地下水埋深仍能维持现状,在河岸林草生长和繁殖的6-9月,区域地下水位较现状略有上升,可满足大部分荒漠河岸林草植被的正常生长需求,水库对5年一遇标准以下洪水不调蓄,不会对荒漠河岸林草的繁衍存活产生明显不利影响。  相似文献   

7.
The objective of this work is to analyze and interpret the components or hydrogeological, physical, and chemical variables of the San Diego aquifer to describe it and explain its influence on the sustainable use of groundwater for the providing of this locality. The San Diego municipality covers most of the area of the aquifer and is an area of high urban development that currently needs the contribution of groundwater due to the deficit presented by the main supply from the Central Regional System. Said aquifer is a set of geological strata located within the limits of the San Diego River basin, in the state of Carabobo, which are capable of storing groundwater and transmitting it. Data on lithology, porosity, and pumping level were investigated, which allows calculating an estimate of the volume of water available in the aquifer. Regarding the quality of the water, the data on hardness, chlorides, sulfates, nitrates, conductivity, calcium, magnesium, and pH, show that the water towards the center and north of the aquifer is of good quality, being able to classify it as type 1A, while toward the southern end—this is of lower quality, where the mineral parameters are higher, which is related to the probable intrusion of brackish water from Lake Valencia. It is concluded by establishing that the volume of groundwater, its availability, extraction feasibility, and its quality, make it suitable for urban supply and that said extraction is sustainable. But a better-integrated type of management must be designed, considering the contribution of the Regional System of the Center and the adequacy of the distribution networks.  相似文献   

8.
It is well established that trees help to reduce air pollution, and there is a growing impetus for green belt expansion in urban areas. Identification of suitable plant species for green belts is very important. In the present study, the Air Pollution Tolerance Index (APTI) of many plant species has been evaluated by analyzing important biochemical parameters. The Anticipated Performance Index (API) of these plant species was also calculated by considering their APTI values together with other socio-economic and biological parameters. Based on these two indices, the most suitable plant species for green belt development in urban areas were identified and recommended for long-term air pollution management.  相似文献   

9.
Multimetric indices based on fish and benthic macroinvertebrate assemblages are commonly used to assess the biological integrity of aquatic ecosystems. However, their response to specific stressors is rarely known. We quantified the response of a fish-based index (Mid-Atlantic Highlands Index of Biotic Integrity, MAH-IBI) and a benthic invertebrate-based index (West Virginia Stream Condition Index, WV-SCI) to acid mine drainage (AMD)-related stressors in 46 stream sites within the Cheat River watershed, West Virginia. We also identified specific stressor concentrations at which biological impairment was always or never observed. Water chemistry was extremely variable among tributaries of the Cheat River, and the WV-SCI was highly responsive across a range of AMD stressor levels. Furthermore, impairment to macroinvertebrate communities was observed at relatively low stressor concentrations, especially when compared to state water quality standards. In contrast to the WV-SCI, we found that the MAH-IBI was significantly less responsive to local water quality conditions. Low fish diversity was observed in several streams that possessed relatively good water quality. This pattern was especially pronounced in highly degraded subwatersheds, suggesting that regional conditions may have a strong influence on fish assemblages in this system. Our results indicate that biomonitoring programs in mined watersheds should include both benthic invertebrates, which are consistent indicators of local conditions, and fishes, which may be indicators of regional conditions. In addition, remediation programs must address the full suite of chemical constituents in AMD and focus on improving linkages among streams within drainage networks to ensure recovery of invertebrate and fish assemblages. Future research should identify the precise chemical conditions necessary to maintain biological integrity in mined Appalachian watersheds.  相似文献   

10.
Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Minnesota, a basin that exemplifies conditions limiting coldwater species survival along Lake Superior's North Shore where shallow bedrock limits groundwater capacity, lowering baseflows and increasing temperatures. Groundwater‐fed reaches were identified through synoptic isotope sampling, with results highlighting the importance of isolated shallow surficial aquifers (glacially derived sands and gravels) for providing cold baseflow waters. In an alluvial reach, monitoring well results show groundwater was stored in two reservoirs: one that reacts quickly to changes in stream levels, and one that remained isotopically isolated under most flow conditions, but which helps sustain summer baseflows for weeks to months. A 500‐year flood demonstrated the capacity of high‐flow events to alter surface water–groundwater connectivity. The previously isolated reservoir was exchanged or mixed during the flood pulse, while incision lowered the water table for years. The results here provide insight for streams that lack substantial groundwater inputs yet maintain coldwater species at risk in a warming climate and an approach for managers seeking to protect cold baseflow sources.  相似文献   

11.
Water use is expected to increase and climate change scenarios indicate the need for more frequent water abstraction. Abstracting groundwater may have a detrimental effect on soil moisture availability for crop growth and yields. This work presents an elegant and robust method for identifying zones of crop vulnerability to abstraction. Archive groundwater level datasets were used to generate a composite groundwater surface that was subtracted from a digital terrain model. The result was the depth from surface to groundwater and identified areas underlain by shallow groundwater. Knowledge from an expert agronomist was used to define classes of risk in terms of their depth below ground level. Combining information on the permeability of geological drift types further refined the assessment of the risk of crop growth vulnerability. The nature of the mapped output is one that is easy to communicate to the intended farming audience because of the general familiarity of mapped information. Such Geographic Information System (GIS)-based products can play a significant role in the characterisation of catchments under the EU Water Framework Directive especially in the process of public liaison that is fundamental to the setting of priorities for management change. The creation of a baseline allows the impact of future increased water abstraction rates to be modelled and the vulnerability maps are in a format that can be readily understood by the various stakeholders. This methodology can readily be extended to encompass additional data layers and for a range of groundwater vulnerability issues including water resources, ecological impacts, nitrate and phosphorus.  相似文献   

12.
The cost of developing groundwater resources in northeastern Illinois from 198cL2020 is estimated for the purpose of providing a basis for comparing alternative sources. Demands for each township in the study area are estimated at 10-year increments and are satisfied, where the supply is sufficient, in such a way as to minimize the cost subject to constraints on supply. Sources of water are two shallow aquifers with known potential yields and a series of deep aquifers treated as a single unit and modeled on a digital computer. For each township the costs of wells, pumps, power and rehabilitation is estimated for each aquifer on a per million gallons of water per day basis. In addition the cost of groundwater treatment necessary to raise the quality to that of treated Lake Michigan water is considered. Raw water costs are found to vary from 2 to 14 cents per 1000 gallons depending upon the depth to the deep aquifer water. Treated water costs vary from 22 to 53 cents per 1000 gallons, the lower costs applying to the largest users because of the economy of scale. It is found that with proper distribution of pumpage there is sufficient water in storage in the deep aquifers to meet groundwater demands through 2020.  相似文献   

13.
14.
本文介绍了滇池流域的自然条件和社会经济发展,分析了水资源特点,对其开发现状和供需预测作了评述,并提出了进一步开发和保护水资源的建议。  相似文献   

15.
ABSTRACT: Lake Chapala, whose primary tributary is the Río Lerma, is the largest freshwater lake in Mexico and for the past 95 years has maintained an average storage capacity close to 6,700 Mm3. Starting hi the early 1970s, the Lerma-Chapala basin rapidly industrialized. In response to these upstream anthropogenic activities, the fisheries, aesthetics, and water quality of Lake Chapala have decreased as a consequence of the increasing chemical and biologic pollutants mainly from the Río Lerma. Additionally, the growth of Guadalajara has resulted in increasing potable water demands on the lake to satisfy a population currently greater than 4.5 million. During the 1980s, the outflow and water losses from the lake substantially exceeded the inflow and other water contributions. In this paper, the recent behavior of the hydrologic and bathymetric parameters of Lake Chapala are summarized and some important physical stresses on the system are identified. The focus of this work is the 1934–1989 period, and it is shown that starting around 1980 some of the main contributors to the lake water balance were severely perturbed and the lake reached its second lowest recorded level. The disturbances of the system are so severe that the entire regional ecosystem could be irreversibly affected in the near future.  相似文献   

16.
Based on surveys and chemical analyses, we performed a case study of the surface water and groundwater quality in the Wuwei basin, in order to understand the sources of water pollution and the evolution of water quality in Shiyang river. Concentrations of major chemical elements in the surface water were related to the distance downstream from the source of the river, with surface water in the upstream reaches of good quality, but the river from Wuwei city to the Hongya reservoir was seriously polluted, with a synthetic pollution index of 25. Groundwater quality was generally good in the piedmont with dominant bicarbonate and calcium ions, but salinity was high and nitrate pollution occurs in the northern part of the basin. Mineralization of the groundwater has changed rapidly during the past 20 years. There are 23 wastewater outlets that discharge a total of 22.4 x 10(6)m(3)y(-1) into the river from Wuwei city, which, combined with a reduction of inflow water, were found to be the major causes of water pollution. Development of fisheries in the Hongya reservoir since 2000 has also contributed to the pollution. The consumption of water must be decreased until it reaches the sustainable level permitted by the available resources in the whole basin, and discharge of wastes must also be drastically reduced.  相似文献   

17.
太湖流域上游典型水体中氮、磷动态变化特征研究   总被引:2,自引:0,他引:2  
本研究在太湖流域上游的太湖与湖间的区域内,选择了25个监测点,对6种典型水体中TN、TP含量进行了为期1年的动态监测,分析了不同类型水体中氮、磷动态变化特征。其结果表明,畜禽养殖厂周围水体TN、TP含量在4~8月份相对较低;水产养殖场周围水体和居民区周围水体TN含量在1~6月份高于其他时间段,水产养殖场周围水体TP含较低的月份在5~8月,而居民区周围水体TP含量变化无明显规律;农田周围水体TN、TP含量较高的月份在12月至次年5月期间,最大值出现在3~4月;入湖河流与湖水TN含量变化趋势与农田周围水体基本一致,入湖河流TP含量在6~10月期间明显低于其他时间段,而湖水中TP含量变化则无明显规律。  相似文献   

18.
ABSTRACT: Records of hourly water temperatures for two streams in the Upper Mississippi River basin were used to find the error between instantaneous measurements of stream water temperatures and true daily averages. The instantaneous summer water temperature measurements were assumed to be collected during daylight hours, and measurement times were selected randomly. The absolute error at the 95 percent confidence level of randomly collected stream water temperatures was less than 0.9°C for a 1 to 5m deep large river, but as large as 3.6°C for a 0.3 to lm deep small stream. Temperature readings of morning samples were usually below daily average values, and afternoon readings were usually above. Daily mean water temperatures were obtained with less than 0.23°C standard deviation from true daily averages if the daily maximum and minimum water temperatures were averaged. Sample results were obtained for the open water (summer) season only, since diurnal water temperature fluctuations in ice covered streams are usually negligible.  相似文献   

19.
Understanding the processes causing herbicide transport to surface waters is crucial to determine mitigation options to reduce these losses. To this end, we investigated the atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) transport in three agricultural catchments (1.1-2.1 km2) in the watershed of Lake "Greifensee" (Switzerland). In 1999, atrazine application data were recorded for all three catchments. Time proportional samples were taken at a high temporal resolution at the catchment outlets. Extremely wet conditions caused large relative losses from the catchments, ranging between 0.6 and 3.5% of the amount applied. Most of the atrazine load was due to event-driven diffuse losses from the fields. Farmyard runoff contributed less but caused the highest concentrations (up to 31 microg L(-1)) in the brooks. The maximum concentrations due to diffuse losses varied between 1.2 and 8.2 microg L(-1) among the catchments. Despite different absolute concentration levels, the concentration time-series were very similar. It seems that the travel-times within the catchments were mainly controlled by the rainfall pattern with little influence of the catchment properties. These properties, however, caused the relative losses to vary by a factor of 6 between the catchments. This variability could be partly explained by differences in the connectivity of the fields to the brooks and by their hydrological soil properties. A comparison of the losses from the three catchments with those from the entire watershed of Lake Greifensee demonstrated that they were representative for the larger area. Hence, the study results provide a good data set to evaluate distributed models predicting herbicide losses.  相似文献   

20.
ABSTRACT: The potential withdrawal of water from the Mullica River-Great Bay Estuary is southern New Jersey prompted a joint study by biologists and engineers to determine the maximum supply of water that could be diverted from the basin without causing undue environmental impacts. The effect of removal of water from the basin over long periods of time was simulated by review of records of a severe drought. Based on analysis of streamflows and salinities during these drought conditions, minimum mean monthly streamflows were determined corresponding to the maximum salinities tolerable by the fish and shellfish communities, important sources of revenue and recreation in the region. A physically optimized, chance constrained linear programming model was developed for the conjunctive use of ground and surface waters. Adjusting water withdrawal from streamflow and groundwater sources according to physical and seasonal criteria would permit maximum use of the basin's resources, with no additional burden on the ecology of the estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号