共查询到20条相似文献,搜索用时 9 毫秒
1.
Mineralization of C.I. Reactive Yellow 84 in aqueous solution by sonolytic ozonation 总被引:2,自引:0,他引:2
The operational parameters and mechanism of mineralization of C.I. Reactive Yellow 84 (RY84), one of the azo dyes, in aqueous solution were investigated using sonolytic ozonation (US/O(3) oxidation). Of the pseudo-first-order degradation rate constants of TOC reduction, 9.0 x 10(-4), 7.3 x 10(-3) and 1.8 x 10(-2)min(-1) were observed with US, O3, and a combination of US and O3, respectively. These results illustrate that ozonation combined with sonolysis for removal of TOC is more efficient than ozonation alone or ultrasonic irradiation alone without considering the operating costs. With the initial pH value at 10.0, the ozone dose at 4.5 g h(-1), the energy density of ultrasound at 176 W l(-1), and the initial concentration of RY84 at 100 mg l(-1), the extent of mineralization measured as TOC loss was maximized. The variation of the concentrations of related ions (oxalate, formate, acetate, NO3(-), NO2(-), NH4(+), Cl(-), and SO4(2-)) during the reaction process was monitored. Other organic intermediates detected by GC/MS were N-methyleneaniline, phthalic acid, 4-hydroxyphthalic acid, isocyanatobenzene, aniline, 4-iminocyclohexa-2,5-dien-1-one, butene diacid and urea. Based on these findings, a tentative degradation pathway was proposed. 相似文献
2.
Jingwei Feng Zheng Zheng Jingfei Luan Jibiao Zhang Lianhong Wang 《Journal of environmental science and health. Part. B》2013,48(7):576-587
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl? increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl? at total mineralization was detected when initial diuron concentration was 13.8 mg L?1. For N species, the final concentrations of NO3 ? and NH4 + after 60 min of reaction time were 0.28 and 0.19 mg L?1, respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron. 相似文献
3.
Feng J Zheng Z Luan J Zhang J Wang L 《Journal of environmental science and health. Part. B》2008,43(7):576-587
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl(-) increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl(-) at total mineralization was detected when initial diuron concentration was 13.8 mg L(-1). For N species, the final concentrations of NO3(-) and NH4+ after 60 min of reaction time were 0.28 and 0.19 mg L(-1), respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron. 相似文献
4.
活性黑KN-B染料模拟废水电化学脱色 总被引:7,自引:2,他引:5
为进一步明确活性染料在可溶性阳极电化学体系中的脱色机理,以铝为牺牲阳极,不锈钢为阴极,在恒电流操作模式下,针对活性黑KN-B模拟废水,考察了电流密度、初始pH值、电解质种类及浓度、温度、染料浓度因素对染料脱色过程的影响。结果表明:(1)电流密度、电解液初始pH值、氯化钠电解质浓度、温度、染料浓度对染料溶液脱色效率影响显著,在一定实验条件下,染料溶液脱色率可达到88%;(2) 在不同pH的范围内,活性黑KN-B表现的脱色机理不同,pH 4~9为混凝与阴极还原脱色共同作用;pH<4和>9则表现为阴极还原脱色为主; (3) 氯化钠的加入在增强染料脱色的同时,也有助于芳环类物质的后续混凝去除。 相似文献
5.
采用多相催化臭氧氧化技术对某染料废水一级好氧生化出水进行系统实验研究,考察该技术对废水COD、色度的去除能力,并探讨其提高废水可生化性的能力。结果表明:在最佳操作条件下,即臭氧投加量200 mg·L-1,接触时间20 min时,COD平均从647 mg·L-1降低到440 mg·L-1,臭氧化指数约等于1;进水色度2 000倍左右,色度去除率达95%以上;SOUR值平均提高至原水的4倍;毒性由65%左右降低至0%;GC-MS结果显示废水中苯胺类、挥发酚类和硝基苯类等有毒污染物几乎全部被去除。另外,对实验所用的自制催化剂(连续使用90 d)进行ICP、BET、SEM、EDS分析,其有效成分锰、铈基本无损耗,催化剂性能稳定。研究表明在废水处理一级生化阶段后增加多相催化臭氧技术,不仅能够进一步去除COD,还可以明显提高二级好氧生化脱氮能力,对于污水处理的升级改造具有重要意义。 相似文献
6.
7.
水溶液中活性艳红KE-3B的臭氧超声联合脱除 总被引:2,自引:1,他引:2
采用臭氧/超声联合技术去除模拟废水中的活性艳红KE-3B。臭氧/超声处理前后KE-3B的紫外可见吸收谱没有明显的变化。臭氧/超声联合作用、单独臭氧化和单独超声处理脱除活性艳红KE-3B模拟废水5 min后的去除率分别为97%、73%和5%,表明臭氧/超声联合降解活性染料具有更高的氧化速率。实验研究了pH值、臭氧投加量、超声能量密度、反应温度对超声/臭氧降解活性艳红KE-3B反应速率的影响,在实验研究范围内,随着溶液初始pH的增大,KE-3B的去除率先增大后减小,超声能量密度的改变对KE-3B的去除影响不大,温度升高有利于氧化反应的进行。在溶液初始pH值为9.0,臭氧投加量3.2 g/h,超声能量密度176 W/L,反应温度20℃时,浓度为100 mg/L的活性艳红KE-3B溶液的去除率最高。 相似文献
8.
Fenton 法降解抗生素磺胺间甲氧嘧啶钠 总被引:2,自引:1,他引:2
应用Fenton高级氧化技术降解水溶液中抗生素磺胺间甲氧嘧啶钠(SMMS),系统探讨了起始pH、CSMMS、CFe2+、CH2O2和温度等因素对SMMS降解效果的影响。结果表明:CSMMS=4.53 mg/L,pH=4.0,CH2O2=0.49 mmol/L,CFe2+=19.51μmol/L,T=25℃为最佳反应条件。在最佳条件下,87.4%的SMMS可以在120 min内降解。反应动力学研究表明Fenton氧化降解SMMS分为两个阶段,快速反应阶段和慢速反应阶段,并建立了两阶段动力学模型,模型拟合结果较好。研究结果为含有SMMS的污废水处理提供了基础数据和科学参考。 相似文献
9.
Degradation mechanism of azo dye C. I. reactive red 2 by iron powder reduction and photooxidation in aqueous solutions 总被引:13,自引:0,他引:13
We have made a comparison of the UV-VIS spectra of three azo dyes, C. I. reactive red 2, orange II and C. I. reactive black 8, in aqueous solutions during treatment with iron powder reduction and photooxidation. From this, we propose their mechanisms for reduction photooxidation. GC/MS analyses of the degradation products of the dye C. I. reactive red 2 demonstrated some important steps producing hydrogenated azo structure, substituted benzene and substituted naphthalene. 相似文献
10.
对铁阳极电化学处理直接大红4BE染料废水脱色率和脱色能耗的影响因素进行研究。考察了电流密度、染料溶液初始pH值、染料初始浓度和支持电解质Na2SO4浓度对脱色性能的影响。结果表明,电流密度、染料废水初始pH、染料初始浓度、支持电解质浓度对脱色率和脱色能耗产生较大影响。在电流密度1.667 mA/cm2、pH值6.54、染料浓度50mg/L、Na2SO4浓度0.01 mol/L、温度20℃、搅拌速度600 r/min、电解时间60 min条件下,脱色率达到92.1%,脱色能耗1.298 kWh/kg染料、铁阳极消耗量41 mg/400 mL染料模拟废水。 相似文献
11.
In this study, an aqueous solution of purified, hydrolyzed C.I. Reactive Red 120 (RR 120, Color Index), was selected as a model to investigate the degradation pathways and to obtain additional information on the reaction intermediate formation. The dye was purified to avoid the influence of the impurities on the ozonation process and on the formation of oxidation by-products. To simulate the dye-bath effluents from dyeing processes with azo reactive dyes, a hydrolyzed form of the dye was chosen as a representative compound. High performance liquid chromatography/mass spectrometry and its tandem mass spectrometry was chosen to identify the decomposition pathways and reaction intermediate formation during the ozonation process. In addition total organic carbon and high performance ion chromatography analysis were employed to obtain further information on the reaction processes during ozonation. Purified, hydrolyzed RR 120 was decomposed under the direct nucleophilic attack by ozone resulting in oxidation and cleavage of azo group and aromatic ring, while the triazine group still remained in the solution even after prolonged oxidation time (120 min) due to its high resistance to ozonation. Phenol, 1,2-dihydroxysulfobezene, 1-hydroxysulfonbezene were detected as the degradation intermediates, which were further oxidized by O(3) and *OH to other open-ring products and then eventually led to simple oxalic and formic acid identified by HPIC. 相似文献
12.
Degradation of azo dye Acid Red 14 in aqueous solution by electrokinetic and electrooxidation process 总被引:4,自引:0,他引:4
A new wastewater treatment technology--electrokinetic-electrooxidation process (EK-EO process) is developed in this paper. The EK-EO process can take advantage of both electrooxidation on the anode surface and the electrokinetic process of anionic impurities under an electric field, which can enhance the TOC removal in electrolysis process. The degradation of an anionic azo dye Acid Red 14 (AR14) was experimentally investigated. It was found that under an electric field AR14 could be migrated into anode compartment and be efficiently mineralized. After 360 min electrolysis of 100 mgl(-1) AR14 solutions at 4.5 mAcm(-2), complete discoloration was observed in both cathode and anode compartment. About 60% TOC was electromigrated from cathode compartment to anode compartment, and more than 25 mgl(-1) TOC was abated in anode compartment. A possible degradation mechanism of AR14 by EK-EO process was proposed. Additionally, the effect of current density, recycling flux, and electrolyte concentration on the EK-EO degradation of AR14 was also investigated. 相似文献
13.
Degradation of atrazine by catalytic ozonation in the presence of iron scraps (ZVI/O3) was carried out. The key operational parameters (i.e., initial pH, ZVI dosage, and ozone dosage) were optimized by the batch experiments, respectively. This ZVI/O3 system exhibited much higher degradation efficiency of atrazine than the single ozonation, ZVI, and traditional ZVI/O2 systems. The result shows that the pseudo-first-order constant (0.0927?min?1) and TOC removal rate (86.6%) obtained by the ZVI/O3 process were much higher than those of the three control experiments. In addition, X-ray diffraction (XRD) analysis indicates that slight of γ-FeOOH and Fe2O3 were formed on the surface of iron scrap after ZVI/O3 treatment. These corrosion products exhibit high catalytic ability for ozone decomposition, which could generate more hydroxyl radical (HO?) to degrade atrazine. Six transformation intermediates were identified by liquid chromatography-mass spectrometry (LC-MS) analysis in ZVI/O3 system, and the degradation pathway of atrazine was proposed. Toxicity tests based on the inhibition of the luminescence emitted by Photobacterium phosphoreum and Vibrio fischeri indicate the detoxification of atrazine by ZVI/O3 system. Finally, reused experiments indicate the approving recyclability of iron scraps. Consequently, the ZVI/O3 system could be as an effective and promising technology for pesticide wastewater treatment. 相似文献
14.
针对染料废水色度高、难生物降解等问题,提出了用辉光放电电解等离子体(GDEP)技术降解染料废水阳离子红XL-GRL的方法。研究了放电电压、溶液浓度对脱色率的影响;测定了GDEP产生的活性物质以及降解过程中溶液的电导率、pH和TOC去除率的变化;分析了降解中间产物成分。结果表明,在600 V电压下,GDEP产生了HO?、H?、O?等高活性物质,他们可使染料分子在130 min内的脱色率达到93.32%,在120 min内TOC去除率达到了65.80%。降解过程中产生了大量带电离子及酸性中间产物。推测可能的降解机理是,阳离子红XL-GRL分子在HO·作用下双键断裂,生成酚类等产物,接着继续降解为中间产物醌,并进一步氧化为小分子有机酸,最终矿化为CO2、H2O和简单的无机离子。GDEP在有机染料废水处理方面具有一定的应用前景。 相似文献
15.
In this paper, elimination of two types of organophosphorus pesticides (OPPs), chlorpyrifos and diazinon spiked in aqueous solution by ultrasonic irradiation was investigated. Results showed that chlorpyrifos and diazinon could be effectively and rapidly degraded by ultrasonic irradiation, and the degradation of both pesticides was strongly influenced by ultrasonic power, temperature and pH value. Furthermore, two and seven products for the degradation of chlorpyrifos and diazinon formed during ultrasonic irradiation have been identified by gas chromatography-mass spectrometry, respectively. The hydrolysis, oxidation, hydroxylation, dehydration and decarboxylation were deduced to contribute to the degradation reaction and the degradation pathway for each pesticide under ultrasonic irradiation was proposed. Finally, the toxicity evaluation indicated that the toxicity decreased for diazinon solution after ultrasonic irradiation, but it increased for chlorpyrifos solution. The detoxification of OPPs by ultrasonic irradiation was discriminative. 相似文献
16.
17.
Yoo ES 《Chemosphere》2002,47(9):925-931
The mechanism of decolorization of azo dyes based on the extracellular chemical reduction with sulfide (H2S, HS-, S2-) was postulated for sulfate reducing environments. To design technical decolorization processes of textile wastewater treatment with sulfide produced by sulfate reducing bacteria (SRB), kinetics is of great significance. Batch experiments were made in order to investigate the kinetics of abiotic decolorization of the reactive mono-azo dye C.I. Reactive Orange 96 (RO 96) with sulfide, with varying pH. The decolorization of RO 96 by sulfide under the exclusion of O2 corresponded to first-order kinetics with respect to both dye and sulfide concentration. The decolorization of RO 96 with sulfide at neutral pH (7.1) was advantageous compared with that at pH for 4.1, 6.3, and 6.5. This is attributed to an increase in the fraction of HS- of total sulfide species at neutral pH. The rate constants k for the decolorization at 37 degrees C were obtained as 0.01 for pH = 4.1, 0.06 for pH = 6.3, 0.08 for pH = 6.5, and 0.09 for pH = 7.1 in mM(-1) min(-1). The high rate constants for sulfide at pH 6.5-7.1 support that the decolorization through SRB (i.e. by bio-sulfide) can be effective in anaerobic bacterial systems with sulfate. 相似文献
18.
Andrade LS Ruotolo LA Rocha-Filho RC Bocchi N Biaggio SR Iniesta J García-Garcia V Montiel V 《Chemosphere》2007,66(11):2035-2043
The electrochemical performance of pure Ti–Pt/β-PbO2 electrodes, or doped with Fe and F (together or separately), in the oxidation of simulated wastewaters containing the Blue Reactive 19 dye (BR-19), using a filter-press reactor, was investigated and then compared with that of a boron-doped diamond electrode supported on a niobium substrate (Nb/BDD). The electrooxidation of the dye simulated wastewater (volume of 0.1 l, with a BR-19 initial concentration of 25 mg l−1) was carried out under the following conditions: current density of 50 mA cm−2, volume flow rate of 2.4 l h−1, temperature of 25 °C and electrode area of 5 cm2. The performances of the electrodes in the dye decolorization were quite similar, achieving 100% decolorization, and in some cases 90% decolorization was achieved by applying only ca. 0.3 A h l−1 (8 min of electrolysis). The reduction of the simulated wastewater organic load, monitored by its total organic carbon content (TOC), was greater for the Ti–Pt/β-PbO2–Fe,F electrode obtained from an electrodeposition bath containing 1 mM Fe3+ and 30 mM F−. In this case, after 2 h of electrolysis the obtained TOC reduction was 95%, while for the pure β-PbO2 and the Nb/BDD electrodes the reductions were 84% and 82%, respectively. 相似文献
19.
臭氧光催化降解水中甲醛的研究 总被引:2,自引:0,他引:2
研究比较了3种光化学方法对水中低浓度甲醛的降解效果,考察了初始pH值、甲醛浓度和臭氧投加速率等因素对臭氧光催化(TiO_2/UV/O_3)降解甲醛的影响。结果表明,紫外臭氧(UV/O_3)、光催化(TiO_2/UV)和TiO_2/UV/O_3对甲醛的降解均符合表观一级反应动力学,TiO_2/UV/O_3降解甲醛的一级表观速率常数大于TiO_2/UV与UV/O_3之和,说明臭氧、光催化有明显的协同作用。pH值对臭氧光催化降解甲醛的速率几乎没有影响;甲醛初始浓度增加,表观反应速率常数下降,但甲醛的绝对去除量仍随初始浓度的增加而显著增加;臭氧投加速率增加,降解速率增加。甲醛降解的主要中间产物为甲酸,但甲酸在臭氧光催化反应过程中也快速降解而被矿化,说明臭氧光催化是一种能安全有效去除甲醛的方法。 相似文献
20.
采用超声(US)联合过硫酸钠(SPS)对水中三氯生(TCS)的去除进行了研究,GC/MS鉴定识别了联用工艺降解产物,考察了US功率、SPS的投加量、pH值、碳酸盐和溴离子等对TCS去除的影响。结果表明2,4-二氯苯酚(2,4-DCP)为其主要降解产物,US/SPS工艺强化了单独US去除效果,SPS浓度为4 mmol·L-1,US功率为600 W时,初始浓度为 410 μg·L-1的TCS 120 min后去除率可达100%。TCS的降解符合拟一级反应动力学方程,其动力学常数K=0.028 min-1。TCS的去除率随SPS浓度的增加先增大后减小,实验范围内(0~600 W)TCS去除率随US功率增加而增大,强酸强碱环境不利于TCS的去除,TCS去除率随碳酸氢钠浓度的增加先减小后增大,碳酸钠的加入对TCS去除影响不大,溴离子对TCS的去除具有抑制作用。 相似文献