共查询到20条相似文献,搜索用时 15 毫秒
1.
Here, we present one of the first studies investigating the mobility, solubility and the speciation-dependent in-situ bioaccumulation of antimony (Sb) in an active Sb mining area (Xikuangshan, China). Total Sb concentrations in soils are high (527-11,798 mg kg −1), and all soils, including those taken from a paddy field and a vegetable garden, show a high bioavailable Sb fraction (6.3-748 mg kg −1), dominated by Sb(V). Elevated concentrations in native plant species (109-4029 mg kg −1) underpin this. Both chemical equilibrium studies and XANES data suggest the presence of Ca[Sb(OH) 6] 2, controlling Sb solubility. A very close relationship was found between the citric acid extractable Sb in plants and water or sulfate extractable Sb in soil, indicating that citric acid extractable Sb content in plants may be a better predictor for bioavailable Sb in soil than total acid digestible Sb plant content. 相似文献
2.
Mercury is of particular concern amongst global environmental pollutants, with abundant contaminated sites worldwide, many of which are associated with mining activities. Asturias (Northwest of Spain) can be considered an Hg metallogenic province with abundant epithermal-type deposits, whose paragenetic sequences include also As-rich minerals. These mines were abandoned long before the introduction of any environmental regulations to control metal release from these sources. Consequently, the environment is globally affected, as high metal concentrations have been found in soils, waters, sediments, plants, and air. In this paper, a characterization of the environmental affection caused by Hg mining in nine Asturian mine sites is presented, with particular emphasis in Hg and As contents. Hg concentrations found in the studied milieu are similar and even higher than those reported in previous studies for other mercury mining districts (mainly Almadén and Idrija). Furthermore, the potential adverse health effects of exposure to these elements in the considered sites in this district have been assessed. 相似文献
3.
Long-term mining and smelting activities brought a series of environmental issues into soils in Wanshan mercury (Hg) mining area (WMMA), Guizhou, China. Several studies have been published on the concentrations of Hg in local soils, but a comprehensive assessment of the mass of Hg in soil induced by anthropogenic activities, as presented in this paper, has not been previously conducted. Three districts of WMMA were chosen as the study areas. We summarized previous published data and sampled 14 typical soil profiles to analyze the spatial and vertical distributions of Hg in soil in the study areas. The regional geologic background, direct and indirect Hg deposition, and Hg-polluted irrigation water were considered as the main sources of Hg contaminations in local soils. Furthermore, the enrichment factor (EF) method was applied to assess the extent of anthropogenic input of Hg to soil. Titanium (Ti) was chosen to be the reference element to calculate the EF. Generally, the elevated values of EF were observed in the upper soil layers and close to mine wastes. The total budget of Hg in soil contributed from anthropogenic sources was estimated to be 1,227 t in arable soil and 75 t in natural soil. Our data showed that arable soil was the major sink of anthropogenic Hg in the study area. 相似文献
4.
We studied the bacterial diversity at a single location (the Terrubias mine; Salamanca province, Spain) with a gradient of soil As contamination to test if increasing levels of As would (1) change the preponderant groups of arsenic-resistant bacteria and (2) increase the tolerance thresholds to arsenite [As(III)] and arsenate [As(V)] of such bacteria. We studied the genetic and taxonomic diversity of culturable arsenic-resistant bacteria by PCR fingerprinting techniques and 16S rRNA gene sequencing. Then, the tolerance thresholds to As(III) and As(V) were determined for representative strains and mathematically analyzed to determine relationships between tolerances to As(III) and As(V), as well as these tolerances with the soil contamination level. The diversity of the bacterial community was, as expected, inversely related to the soil As content. The overall preponderant arsenic-resistant bacteria were Firmicutes (mainly Bacillus spp.) followed by γ- Proteobacteria (mainly Pseudomonas spp.), with increasing relative frequencies of the former as the soil arsenic concentration increased. Moreover, a strain of the species Rahnella aquatilis (γ -Proteobacteria class) exhibited strong endurance to arsenic, being described for the first time in literature such a phenotype within this bacterial species. Tolerances of the isolates to As(III) and As(V) were correlated but not with their origin (soil contamination level). Most of the strains (64%) showed relatively low tolerances to As(III) and As(V), but the second most numerous group of isolates (19%) showed increased tolerance to As(III) rather than to As(V), even though the As(V) anion is the prevalent arsenic species in soil solution at this location. To our knowledge, this is the first study to report a shift towards preponderance of Gram-positive bacteria ( Firmicutes) related to high concentrations of soil arsenic. It was also shown that, under aerobic conditions, strains with relatively enhanced tolerance to As(III) predominated over the most As(V)-tolerant ones. 相似文献
5.
Direct mercury (Hg) speciation was assessed for soil samples with a Hg concentration ranging from 7 up to 240 mg kg −1. Hg chemical forms were identified and quantified by sequential extractions and bulk- and micro-analytical techniques exploiting synchrotron generated X-rays. In particular, microspectroscopic techniques such as μ-XRF, μ-XRD and μ-XANES were necessary to solve bulk Hg speciation, in both soil fractions <2 mm and <2 μm. The main Hg-species found in the soil samples were metacinnabar (β-HgS), cinnabar (α-HgS), corderoite (Hg 3S 2Cl 2), and an amorphous phase containing Hg bound to chlorine and sulfur. The amount of metacinnabar and amorphous phases increased in the fraction <2 μm. No interaction among Hg-species and soil components was observed. All the observed Hg-species originated from the slow weathering of an inert Hg-containing waste material (K106, U.S. EPA) dumped in the area several years ago, which is changing into a relatively more dangerous source of pollution. 相似文献
6.
汞是中国工业污染场地土壤中常见的重金属污染物,汞的常见形态包括单质汞、无机汞和甲基汞。比较了不同形态的汞及其化合物在物化性质、环境行为、毒性效应及致毒机制上的差异,还以美国、英国为例,探讨了针对不同形态的汞分别制定土壤环境限值的方法。最后指出,中国现有的土壤环境质量相关标准以及污染场地风险评估导则中均尚未区分汞的形态,仅给出总汞含量的限值。因此,在未来的相关标准制定中,应考虑按汞的各种形态制定不同的标准,这将更有利于客观准确评价工业污染场地土壤中汞的污染程度和环境风险。 相似文献
7.
Monomethylmercury (CH 3Hg + and its complexes; MeHg hereafter) is a known developmental neurotoxin. Recent studies have shown that rice ( Oryza sativa L.) grain grown from mercury (Hg) mining areas may contain elevated MeHg concentrations, raising concerns over the health of local residents who consume rice on a daily basis. An analytical method employing high performance liquid chromatography (HPLC) - inductively coupled plasma mass spectrometry (ICP-MS) following enzymatic hydrolysis was developed to analyze the speciation of MeHg in uncooked and cooked white rice grain grown from the vicinity of a Hg mine in China. The results revealed that the MeHg in the uncooked rice is present almost exclusively as CH 3Hg-l-cysteinate (CH 3HgCys), a complex that is thought to be responsible for the transfer of MeHg across the blood-brain and placental barriers. Although cooking does not change the total Hg or total MeHg concentration in rice, no CH 3HgCys is measurable after cooking, suggesting that most, if not all, of the CH 3HgCys is converted to other forms of MeHg, the identity and toxicity of which remain elusive. 相似文献
8.
A total of 168 bacterial strains isolated from soil of the La Laguna area (Tenerife Island, Spain) were characterized and assayed for phenol-oxidase enzymes (as an indicator of lignolytic capability). 相似文献
9.
Environmental Science and Pollution Research - To elucidate the dynamics of mercury emitted and released by artisanal and small-scale gold mining (ASGM) activity and to estimate its impact on the... 相似文献
10.
Although exogenous factors such as pollutants can act on endogenous drivers (e.g. dispersion) of populations and create spatially autocorrelated distributions, most statistical techniques assume independence of error terms. As there are no studies on metal soil pollutants and microarthropods that explicitly analyse this key issue, we completed a field study of the correlation between Oribatida and metal concentrations in litter, organic matter and soil in an attempt to account for spatial patterns of both metals and mites. The 50-m wide study area had homogenous macroscopic features, steep Pb and Cu gradients and high levels of Zn and Cd. Spatial models failed to detect metal–oribatid relationships because the observed latitudinal and longitudinal gradients in oribatid assemblages were independent of the collinear gradients in the concentration of metals. It is therefore hypothesised that other spatially variable factors (e.g. fungi, reduced macrofauna) affect oribatid assemblages, which may be influenced by metals only indirectly. 相似文献
11.
The decommissioned Mount Todd gold mine, located in the wet-dry tropics of northern Australia, consists of a large waste water inventory and an acid rock drainage problem, which has the potential to impact upon freshwater ecosystems of the Edith River catchment. The toxicity of retention pond 1 (RP1) water was determined using six local freshwater species (duckweed, alga, cladoceran, snail, hydra and a fish). RP1 water was very toxic to all species, with the percentage dilution of RP1 water inhibiting 10% of organism response (IC(10)), or lethal to 5% of individuals (LC(5)), ranging from 0.007 to 0.088%. The percentage dilution of RP1 water inhibiting 50% of organism response (IC(50)), or lethal to 50% of individuals (LC(50)), ranged from 0.051% to 0.58%. Based on chemical analyses and geochemical speciation modelling of the test waters, Cu, Zn and Al were the most likely toxic components at acidic dilutions (i.e. 1%), while Cu and Zn were the most likely toxic components at 0.1% RP1 water, where pH was 6.5. Species sensitivity distributions (SSDs) were used to predict dilutions of RP1 water that would protect or unacceptably affect the downstream aquatic ecosystems. A dilution ratio of 1 part RP1 water to 20000 parts Edith River water (0.005% RP1 water) was calculated to be required for the protection of at least 95% of species. This information can be used in conjunction with field chemical and biological data to better predict the ecological risks of RP1 waste water downstream of the Mount Todd mine. 相似文献
12.
Acid mine drainage (AMD) represents a major source of water pollution in the small watershed of Xingren coalfield in southwestern Guizhou Province. A detailed geochemical study was performed to investigate the origin, distribution, and migration of REEs by determining the concentrations of REEs and major solutes in AMD samples, concentrations of REEs in coal, bedrocks, and sediment samples, and modeling REEs aqueous species. The results highlighted that all water samples collected in the mining area are identified as low pH, high concentrations of Fe, Al, SO4 2? and distinctive As and REEs. The spatial distributions of REEs showed a peak in where it is nearby the location of discharging of AMD, and then decrease significantly with distance away from the mining areas. Lots of labile REEs have an origin of coal and bedrocks, whereas the acid produced by the oxidation of pyrite is a prerequisite to cause the dissolution of coal and bedrocks, and then promoting REEs release in AMD. The North American Shale Composite (NASC)-normalized REE patterns of coal and bedrocks are enriched in light REEs (LREEs) and middle REEs (MREEs) relative to heavy REEs (HREEs). Contrary to these solid samples, AMD samples showed slightly enrichment of MREEs compared with LREEs and HREEs. This behavior implied that REEs probably fractionate during acid leaching, dissolution of bedrocks, and subsequent transport, so that the MREEs is primarily enriched in AMD samples. Calculation of REEs inorganic species for AMD demonstrated that sulfate complexes (Ln(SO4)+and Ln(SO4)2 ?) predominate in these species, accounting for most of proportions for the total REEs species. The high concentrations of dissolved SO4 2? and low pH play a decisive role in controlling the presence of REEs in AMD, as these conditions are necessary for formation of stable REEs-sulfate complexes in current study. The migration and transportation of REEs in AMD are more likely constrained by adsorption and co-precipitation of Fe-Al hydroxides/hydroxysulfate. In addition, the MREEs is preferentially captured by poorly crystalline Fe-Al hydroxides/hydroxysulfate, which favors that sediments also preserve NASC-normalized patterns with MREEs enrichment in the stream. 相似文献
13.
An arsenic speciation study has been performed in PM10 samples collected on a fortnight basis in the city of Huelva (SW Spain) during 2001 and 2002. The arsenic species were extracted from the PM10 filters using a NH2OH x HCl solution and sonication, and determined by HPLC-HG-AFS. The mean bulk As concentration of the samples analyzed during 2001 and 2002 slightly exceed the mean annual 6 ng m(-3) target value proposed by the European Commission for 2013, arsenate [As(V)] being responsible for the high level of arsenic. The speciation analyses showed that As(V) was the main arsenic species found, followed by arsenite [As(III)] (mean 6.5 and 7.8 ng m(-3) for As(V), mean 1.2 and 2.1 ng m(-3) for As(III), in 2001 and 2002, respectively). The high levels of arsenic species found in PM10 in Huelva have a predominant industrial origin, such as the one from a nearby copper smelter, and do not present a seasonal pattern. The highest daily levels of arsenic species correspond to synoptic conditions in which the winds with S and SW components transport the contaminants from the main emission source. The frequent African dust outbreaks over Huelva may result in an increment of mass levels of PM10, but do not represent a significant input of arsenic in comparison to the anthropogenic source. The rural background levels of arsenic around Huelva are rather high, in comparison to other rural or urban areas in Spain, showing a relatively high atmosphere residence time of arsenic. This work shows the importance of arsenic speciation in studies of aerosol chemistry, due to the presence of arsenic species [As(III) and As(V)] with distinct toxicity. 相似文献
14.
An in vitro method that simulated the physiological conditions of the digestive process was applied to samples taken from an old mining site, providing information on the levels of metals (Cd, Pb and As) that can be ingested and assimilated by humans. Samples were first characterized by determining pH, texture, mineralogical composition and total metal contents. The mean pH value was 5.4, ranging from 3.1 to 8.4. The mean total metal content for Pb was 2,632+/-59 mg kg(-1), 65+/-1.5 mg kg(-1) for Cd and 279.9+/-9.9 mg kg(-1) for As. Cadmium was the most bioavailable metal both in the stomach and intestinal phases (mean value of 47% and 27.8%, respectively), followed by lead (25.3% and 11.5%) and arsenic (4.9% and 0.5%). A Pearson correlation matrix suggested that pH and mineralogical composition were important factors controlling metal bioavailability from materials in abandoned mining sites. 相似文献
15.
In this paper heavy metal pollution at an abandoned Italian pyrite mine has been investigated by comparing total concentrations and speciation of heavy metals (Fe, Cu, Mn, Zn, Pb and As) in a red mud sample and a river sediment. Acid digestions show that all the investigated heavy metals present larger concentrations in the sediment than in the tailing. A modified Tessier's procedure has been used to discriminate heavy metal bound to organic fraction from those originally present in the mineral sulphide matrix and to detect a possible trend of metal mobilisation from red mud to river sediment. Sequential extractions on bulk and size fractionated samples denote that sediment samples present larger percent concentrations of the investigated heavy metals in the first extractive steps (I-IV) especially in lower dimension size fractionated samples suggesting that heavy metals in the sediment are significantly bound by superficial adsorption mechanisms. 相似文献
16.
Wuchuan Hg mine, located in the Circum-Pacific Global Mercuriferous Belt, is one of the important Hg production centers in Guizhou province, China. Soil Hg concentrations in this area are elevated by 2–4 orders of magnitude compared to the national background value in soil which is 0.038 μg g −1. In situ air Hg concentrations and air/soil Hg fluxes were measured at five sampling sites in Wuchuan Hg mining area (WMMA) from 19 to 26 December 2003 and from 18 to 25 December 2004. The results showed that air Hg concentrations were 2–4 orders of magnitude higher than those observed in background areas in Europe and North America due to a large amount of Hg emission from artisanal Hg smelting activities. The average in situ Hg fluxes at site Laohugou, Jiaoyan, Luoxi, Sankeng and Huanglong were −5493, 124, −924, −13 and 140 ng m −2 h −1, respectively. Diurnal pattern of Hg flux was not found and a number of negative Hg fluxes were observed in our sampling campaigns. The correlations between Hg fluxes and meteorological parameters such as solar irradiation, air temperature, soil temperature and relative humidity and air Hg concentrations were investigated. The commonly observed significant correlations between Hg fluxes and meteorological parameters observed in many previous studies were not obtained in WMMA. However, significantly negative correlations between Hg flux and air Hg concentration were observed at all sites. Our study demonstrated that highly elevated air Hg concentrations could suppress Hg emission processes even from Hg-enriched soil. At specific conditions in WMMA, air Hg concentrations play a dominant role in controlling Hg emission from soil. 相似文献
17.
This work considered the environmental impact of artisanal mining gold activity in the Migori–Transmara area (Kenya). From artisanal gold mining, mercury is released to the environment, thus contributing to degradation of soil and water bodies. High mercury contents have been quantified in soil (140 μg kg ?1), sediment (430 μg kg ?1) and tailings (8,900 μg kg ?1), as expected. The results reveal that the mechanism for transporting mercury to the terrestrial ecosystem is associated with wet and dry depositions. Lichens and mosses, used as bioindicators of pollution, are related to the proximity to mining areas. The further the distance from mining areas, the lower the mercury levels. This study also provides risk maps to evaluate potential negative repercussions. We conclude that the Migori–Transmara region can be considered a strongly polluted area with high mercury contents. The technology used to extract gold throughout amalgamation processes causes a high degree of mercury pollution around this gold mining area. Thus, alternative gold extraction methods should be considered to reduce mercury levels that can be released to the environment. 相似文献
18.
Atmospheric elemental, reactive and particulate mercury (Hg) concentrations were measured north of downtown Reno, Nevada, USA from November 2004 to November 2007. Three-year mean and median concentrations for gaseous elemental Hg (Hg 0) were 1.6 and 1.5 ng m −3 (respectively), similar to global mean Hg 0 concentrations. The three-year mean reactive gaseous Hg (RGM) concentration (26 pg m −3) was higher than values reported for rural sites across the western United States. Well defined seasonal and daily patterns in Hg 0 and RGM concentrations were observed, with the highest Hg 0 concentrations measured in winter and early morning, and RGM concentrations being greatest in the summer and mid-afternoon. Elevated Hg 0 concentrations in winter were associated with periods of cold, stagnant air; while a regularly observed early morning increase in concentration was due to local source and surface emissions. The observed afternoon increase and high summer values of RGM can be explained by in situ oxidation of gaseous Hg 0 or mixing of RGM derived from the free troposphere to the surface. Because both of these processes are correlated with the same environmental conditions it is difficult to assess their overall contribution to the observed trends. 相似文献
19.
Data gathered in this study suggested the exposure of rats and Algerian mice, living in an abandoned mining area, to a mixture of heavy metals. Although similar histopathological features were recorded in the liver and spleen of both species, the Algerian mouse has proved to be the strongest bioaccumulator species. Hair was considered to be a good biological material to monitor environmental contamination of Cr in rats. Significant positive associations were found between the levels of this element in hair/kidney (r=0.826, n=9, p<0.01) and hair/liver (r=0.697, n=9, p=0.037). Although no association was found between the levels of As recorded in the hair and in the organs, the levels of this element recorded in the hair, of both species, were significantly higher in animals captured in the mining area, which met the data from the organs analysed. Nevertheless, more studies will be needed to reduce uncertainty about cause-effect relationships. 相似文献
20.
This paper aims to investigate the degradation and speciation of EDDS-complexes (SS-ethylenediaminedisuccinic acid) in soil following soil washing. The changes in soil solution metal and EDDS concentrations were investigated for three polluted soils. EDDS was degraded after a lag phase of 7-11 days with a half-life of 4.18-5.60 days. No influence of EDDS-speciation on the reaction was observed. The decrease in EDDS resulted in a corresponding decrease in solubilized metals. Changes in EDDS speciation can be related to (1) initial composition of the soil, (2) temporarily anoxic conditions in the soil slurry after soil washing, (3) exchange of EDDS complexes with Cu even in soils without elevated Cu and (4) formation of NiEDDS. Dissolved organic matter is important for metal speciation at low EDDS concentrations. Our results show that even in polluted soils EDDS is degraded from a level of several hundred micromoles to below 1 microM within 50 days. 相似文献
|