首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Bioleaching processes have been demonstrated to be effective technologies in removing heavy metals from wastewater sludge, but long hydraulic retention times are typically required to operate these bioprocesses. A hybrid process (coupling biological and chemical processes) has been explored in laboratory pilot-scale experiments for heavy metals (cadmium [Cd], copper [Cu], chromium [Cr], and zinc [Zn]) removal from three types of sludge (primary sludge, secondary activated sludge, and a mixture of primary and secondary sludge). The hybrid process consisted of producing a concentrate ferric ion solution followed by chemical treatment of sludges. Ferric iron solution was produced biologically via oxidation of ferrous iron by A. ferrooxidans in a continuous-flow stirred tank (5.2 L) reactor (CSTR). Wastewater sludge filtrate (WSF) containing nutrients (phosphorus and nitrogen) has been used as culture media to support the growth and activity of indigenous iron-oxidizing bacteria. Results showed that total organic carbon (TOC) concentrations of the culture media in excess of 235 mg/L were found to be inhibitory to bacterial growth. The oxidation rate increased as ferrous iron concentrations ranged from 10 to 40 g Fe2+/L. The percentage of ferrous iron (Fe2+) oxidized to ferric iron (Fe3+) increased as the hydraulic retention time (HRT) increased from 12 to 48 h. Successful and complete Fe2+ oxidation was recorded at a HRT of 48 h using 10 g Fe2+/L. Subsequently, ferric ion solution produced by A. ferrooxidans in sludge filtrate was used to solubilize heavy metals contained in wastewater sludge. The best solubilization was obtained with a mixture of primary and secondary sludge, demonstrating a removal efficiency of 63, 71, 49, and 80% for Cd, Cu, Cr, and Zn, respectively.  相似文献   

2.
Bioleaching of metals can be achieved in sewage sludge using Thiobacillus ferrooxidans, which obtains its energy requirements from the oxidation of added ferrous iron. The purpose of this study was to verify the presence of indigenous T. ferroxidans and to evaluate their adaptive capacity and leaching potential. Nineteen sludges (primary, secondary, aerobically and anaerobically digested, oxidation pond) were tested and all of them contained indigenous iron-oxidizing bacteria. The acclimation of these organisms by successive transfers allowed a rise of sludge redox potential over 450 mV and a decrease of sludge pH between 3.8 and 2.2 over a 10-day incubation period. The metal solubilization efficiencies were Cd: 55-98%, Cr: 0-32%, Cu: 39-94%, Mn: 71-98%, Ni: 37-98%, Pb: 0-31% and Zn: 66-98%, were reached with these indigenous strains. The results obtained show that the metal bioleaching may be easily realized by direct acclimation of sludge microflora.  相似文献   

3.
氧化亚铁硫杆菌是脱硫领域的重要微生物之一。研究了在亚铁和含硫基质双底物存在的条件下,氧化亚铁硫杆菌对2种能源物质的利用情况,结果表明,Thiobacillus ferrooxidans在双底物利用过程中,铁氧化系统首先启动,随Fe2+浓度的下降,硫氧化系统开始启动,之后两者协同作用;3种含硫基质的存在对Fe2+的氧化有不同的影响,S对Fe2+的氧化不产生抑制作用,而Na2S2O3和Na2SO3对Fe2+的氧化有一定的抑制,尤其是Na2SO3的抑制作用更明显,亚铁完全氧化所需的时间更长。  相似文献   

4.
Water samples draining a disused copper mine (Parys Mountain) in Anglesey, North Wales, were analysed for distribution of acidophilic bacteria (iron oxidising and heterotrophic) and for changes in physicochemical composition along the length of the drainage stream. Ten samples were taken at regular distance intervals along a 1 km stretch from the source of the acid mine drainage. The stream remained highly acidic (pH < 2.8) although a slight decrease (0.6 pH unit) in acidity with distance from source was observed. Concentrations of most metals measured decreased with distance along the length of the stream, although some showed a gradual increase and others peaked at c. 200 m from source. Most dissolved iron was in the ferrous form in the upper reaches of the stream, but ferric iron became increasingly dominant downstream as a result of microbial oxidation. Although concentrations of nutrients such as nitrogen and phosphorus were low in the acid mine drainage, they were not limiting rates of bacterial iron oxidation, which appeared to be limited more by temperature. The iron oxidising bacteria Thiobacillus ferrooxidans and Leptospirillum ferrooxidans were both isolated from all sampling sites, although their relative abundances varied; L. ferrooxidans accounted for 57% of all iron oxidising isolates. Numbers of iron oxidising bacteria decreased with distance from drainage source, in contrast to those of acidophilic heterotrophic bacteria which increased. The diversity of heterotrophic isolates also increased with distance. The relationship between the chemistry and microbiology of the stream is discussed.  相似文献   

5.
载体的选择对氧化亚铁硫杆菌的固定化至关重要,选择活性炭、煤矸石、陶粒和沸石4种载体,考察这4种载体在不同添加量下对氧化亚铁硫杆菌氧化活性的影响,并分析载体表面附着的生物量.结果表明,这4种材料均可作为细菌固定化培养的载体材料.在载体添加量为25~75 g/L条件下,载体对细菌生长过程中Fe2 浓度变化影响最大,随载体添加量的增加,Fe2 氧化速率增加,而对pH变化和Eh变化无明显影响.单位重量的活性炭、陶粒和沸石的生物量高于单位重量煤矸石的,但随载体添加量的增加,其生物量减小;对煤矸石,随载体添加量的增加,其生物量增加.  相似文献   

6.
以硫酸亚铁盐为底物,培养以氧化亚铁硫杆菌为主要菌种的土著沥滤微生物,采用批式方法对湘江长沙段底泥进行微生物沥浸实验。实验结果表明,底物投加量与底泥固体浓度比(Sd/Sc)为1.5时已能满足底泥的微生物沥浸要求,进一步研究发现底泥固体浓度为13%、底物投加量为19.5 g/L、沥浸时间为6 d时,底泥中超标重金属Cd、Zn和Cu的去除率可分别达到83.1%、75.3%和61.2%;沥浸后底泥中大部分重金属以残渣态存在,且含量低于农用污泥中污染物控制标准,其中硫化物有机结合态Cu浸出较Zn、Cd需更低的pH,且Cu以间接机理浸出为主;以Fe2+为底物的沥浸体系中,黄铁矾的重吸附或共沉淀是沥浸实验后期重金属浸出率下降的原因之一。  相似文献   

7.
Gu XY  Wong JW 《Chemosphere》2007,69(2):311-318
The presence of organic acids was found to be inhibitory to the bioleaching of sewage sludge and the objective of the present study was to elucidate the roles of heterotrophic microorganisms in removing organic acids during the bioleaching of heavy metals from anaerobically digested sewage sludge. Microbiological analysis showed that acetic and propionic acids posed a severe inhibitory effect on iron-oxidizing bacteria as reflected by a sharp decrease in their viable counts in the first 4d and it only started to increase 2d after the depletion of both acids. Biodegradation of these inhibitory organic acids was revealed by sharp increases in total fungi and acidophiles between day 3 and day 5 which coincided with degradation of organic acids. This was further confirmed by the increases in total counts of both acetate and propionate degraders in the same period. Two yeast strains Y4 and Y5 with strong ability to degrade acetate and/or propionate were isolated and identified as Pichia sp. and Blastoschizomycetes capitatus, respectively. B. capitatus Y5 was an more important player in removing the inhibitory organic acids during the bioleaching process since it could utilize both acetate and propionate as sole carbon source while Pichia sp. Y4 was an strict acetate degrader. Results from the present study not only provided the evidence for biodegradation of organic acids by heterotrophs, but also disclosed a biological mechanism for the initiation of bioleaching of organic acid-laden sewage sludge.  相似文献   

8.
Fang D  Zhou LX 《Chemosphere》2007,69(2):303-310
Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment.  相似文献   

9.
In order to remove high concentrations of hydrogen sulfide (H2S) gas from anaerobic wastewater treatments in livestock farming, a novel process was evaluated for H2S gas abatement involving the combination of chemical absorption and biological oxidation processes. In this study, the extensive experiments evaluating the removal efficiency, capacity, and removal characteristics of H2S gas by the chemical absorption reactor were conducted in a continuous operation. In addition, the effects of initial Fe2+ concentrations, pH, and glucose concentrations on Fe2+ oxidation by Thiobacillus ferrooxidans CP9 were also examined. The results showed that the chemical process exhibited high removal efficiencies with H2S concentrations up to 300 ppm, and nearly no acclimation time was required. The limitation of mass-transfer was verified as the rate-determining step in the chemical reaction through model validation. The Fe2+ production rate was clearly affected by the inlet gas concentration as well as flow rate and a prediction equation of ferrous production was established. The optimal operating conditions for the biological oxidation process were below pH 2.3 and 35 degrees C in which more than 90% Fe3+ formation ratio was achieved. Interestingly, the optimal glucose concentration in the medium was 0.1%, which favored Fe2+ oxidation and the growth of T. ferrooxidans CP9.  相似文献   

10.
以城市污水处理厂剩余污泥作为处理介质,土著嗜酸氧化硫硫杆菌(Acidithiobacillus thiooxidans,A.thiooxi-dans)为主要沥滤微生物,采用序批式生物沥滤装置,就投加150~725μm的不同粒径元素硫对沥滤的酸化效果、硫酸根产率和重金属去除效果的影响进行了研究。结果表明,在元素硫投配量为3 g/L,曝气强度为1.0 L/(min.L)的条件下,元素硫粒径在165~215μm范围减小时能显著改善污泥酸化速度、提高酸化程度和硫酸根产率。底物元素硫的最佳粒径为165μm,此时沥滤体系pH下降速率为0.85个pH单位/d,硫酸根的产率为454.9 mg/(L.d),沥滤6 d后污泥中高浓度重金属Cu、Zn、Cd的去除率达到70.3%、81.2%、87.8%.  相似文献   

11.
The objective of this research was to investigate the performance of the ferrous sulfate bioleaching (FSBL) process in a pilot plant for decontamination and stabilization of wastewater sludge. Batch and continuous experiments, conducted with two 4-m3 bioreactors using indigenous iron-oxidizing bacteria (20% v/v of inoculum) with addition of 4.0 g ferrous sulfate heptahydrate per liter of sludge initially acidified to pH 4.0, were sufficient for effective heavy metal (cadmium, copper, manganese, zinc, and lead) removal yields. The average metal removal yields during the FSBL process were as follows: cadmium (69 to 75%), copper (68 to 70%), manganese (72 to 73%), zinc (65 to 66%), and lead (16%). The FSBL process was also found to be effective in removing both fecal and total coliforms (abatement > 5 to 6 log units). The nutrients content (nitrogen, phosphorus, and magnesium) were also preserved in decontaminated sludge.  相似文献   

12.
基于微生物酸性铁溶液烟气脱硫特性,实验构建了一套内循环气升式反应器.在反应器中,利用处于对数生长期的氧化亚铁硫杆菌(Thiobacillus ferrooxidans)酸性铁溶液进行了模拟烟道气SO2脱除实验研究.为寻求高脱硫率,实验研究了铁离子浓度、入口氧含量、细菌数和pH值的变化对脱硫率的影响.考察了反应液中Fe(Ⅱ)离子浓度的变化规律.实验表明,含T.f菌酸性铁溶液的脱硫效果较高;Fe离子浓度在7.67 g/L左右时脱硫率最佳;入口气中氧含量、反应液中细菌数和pH值越高,反应液的脱硫率也就越高.反应液中的Fe(Ⅱ)离子浓度是一先扬后抑的变化过程.  相似文献   

13.
Microbial metal leaching from sewage sludge (2-9% w/v) was carried out with the iron-oxidizing bacterium Thiobacillus ferrooxidans. Measurements of pH, oxidation-reduction potential, and concentration of Fe2+ indicated that T. ferrooxidans was effective in removing metals from an incubation bath containing less than 5% sludge solids concentration. Specifically, Cu leaching was completely suppressed at a high solids concentration of 9% (w/v). Results indicated that the deactivation of T. ferrooxidans at a high sludge content was mainly due to the presence of inhibiting materials such as organic matter. A mixed culture of sulfur-oxidizing bacteria was obtained by enrichment from anaerobically digested sewage sludge to enhance the efficiency of the microbial leaching process. These bacteria were much more effective in metal leaching than was iron-oxidizing T. ferrooxidans. At 9% (w/v) solids concentration, the leaching efficiencies of Zn and Cu were 78% (2.66 g/kg dry sludge) and 59% (1.36 g/kg dry sludge), respectively. Therefore, when removing heavy metals from the anaerobically digested sewage sludge, the indigenous sulfur-oxidizing bacteria isolated in the current study were more efficient than T. ferrooxidans, especially at high sludge solids concentrations.  相似文献   

14.
活性污泥数学模型中异养菌产率系数测定方法的研究   总被引:2,自引:0,他引:2  
采用间歇活性污泥法和呼吸计量法测定活性污泥数学模型中异养菌产率系数.研究结果表明,间歇活性污泥法测定结果受试验控制条件特别是污泥有机负荷的影响非常大,且试验周期比较长;人工配水条件下,呼吸计量法测定异氧菌产率系数(YH)在0.71以上,比活性污泥数学模型推荐值高,其结果与底物性质有关,该方法准确性高,重现性良好.  相似文献   

15.
Sulfide precipitation by addition of iron salts is a widely used strategy for sulfide control in wastewater collection systems. Several parameters, such as pH, oxidation-reduction conditions, and reactant concentrations, are known to affect the feasibility of the method. However, their combined effects are difficult to predict for complex media, such as wastewater. This study investigates the effect of pH and reactant concentrations on the efficiency of iron sulfide precipitation in anaerobic municipal wastewater. Laboratory experiments showed that, when the pH was below 7, typically less than 40% of the added ferrous iron reacted by sulfide precipitation, although sulfide was in excess. However, when the pH was above 8, almost complete precipitation of all the added ferrous iron was observed. Varying the ferric-iron-to-ferrous-iron ratio demonstrated that improved efficiency could be achieved when using a 1:1 mixture of ferric chloride and ferrous sulfate.  相似文献   

16.
分别以厌氧污泥、脱氮硫杆菌菌悬液和厌氧污泥并添加脱氮硫杆菌菌悬液为接种物,以硫化物和硝酸盐为进水基质,考察不同接种物条件下,各反应器的硫化物氧化特性、反硝化特性、生化反应机理及微生物特性。结果表明,在无菌条件下,硫化物不能被硝酸盐化学氧化。接种脱氮硫杆菌菌悬液的2#反应器的硫氧化速率为1.98 g S/(m3.h),停留24 h硫化物的去除率高达97%,脱硫能力最强,该接种条件下以硝酸盐氧化硫化物为主反应,优势菌为杆菌,进水的NO3--N/S应控制在0.4以下,可以实现高效生物脱硫。接种厌氧污泥的1#和3#反应器的脱氮效果比2#反应器好,停留时间为24 h时,硝酸盐的平均去除率为96%。单独接种厌氧污泥的1#反应器的硫氧化速率为1.78 g S/(m3.h),其优势菌为球菌,该接种条件下以硝酸盐氧化硫化物和硝酸盐氧化单质硫为主反应,进水的NO3--N/S应控制在0.8左右。以厌氧污泥联合脱氮硫杆菌为接种物时,硫氧化速率为1.71 g S/(m3.h),反应器以硝酸盐氧化硫化物、硝酸盐氧化单质硫以及异养反硝化为主反应,驯化后优势菌为球形、卵圆形和短杆状,应控制进水NO3--N/S为1.2,可以实现同步脱硫反硝化,该工艺既可以用于含硫废水的处理,也可以用于C/N低的硝酸盐废水的处理。  相似文献   

17.
Ferrous iron was found year round at 2-4 mM in the anoxic hypolimnion of the Halls Brook Holding Area (HBHA), a small lake in eastern Massachusetts. Oxygenated epilimnion waters always had total iron concentrations of <80 nanomolar, implying nearly complete oxidation of ferrous iron as it mixed upward across the lake's pycnocline. Assuming conductivity was a conservative parameter, and using data on the lake's water balance, upward advection rates (0.02-0.05 m d(-1)) and vertical eddy diffusion coefficients (0.007-0.05 m2 d(-1)) were determined for the lake's pycnocline on five dates. Using the same advection and diffusion parameters, corresponding pseudo first-order rate coefficients for ferrous iron oxidation, k(ox) (s(-1)), on those dates were calculated (0.0004-0.007 s(-1)). The values of k(ox) (s(-1)) were always too large to reflect only homogeneous solution reactions; and on at least four dates they appeared too fast to be due to heterogeneous catalysis on iron oxyhydroxides. This suggested that ferrous iron oxidation in this lake's pycnocline was primarily due to catalysis by microorganisms, and this was supported by comparison of azide-poisoned vs. untreated batch tests. As a result of their continuous production, iron oxyhydroxide precipitates and any associated sorbates/coprecipitates are most likely continuously settling back into the lake's deep water and bed sediments, except when episodic storm events flush these solids out of the pycnocline and downstream via the Aberjona River.  相似文献   

18.
Chemically reduced excess sludge production in the activated sludge process   总被引:17,自引:0,他引:17  
Liu Y 《Chemosphere》2003,50(1):1-7
Excess sludge production from wastewater biological treatment process is highly, and the disposal of excess sludge will be forbidden in a near future, thus increased attention has been turned to look into potential technology for sludge reduction. Recently, some novel sludge reduction techniques have been developed based on chemical oxidation and metabolic uncoupling. This paper attempts to review those chemical-assisted sludge reduction processes, including sludge alkaline-thermal treatment, activated sludge-ozonation process, chlorination-combined activated sludge process, sludge reduction by metabolic uncouplers and high dissolved oxygen activated sludge process. In these combined activated sludge processes, excess sludge production can be reduced up to 100% without significant effect on process efficiency and stability. This paper would be useful when one is looking for appropriate environmentally and economically acceptable solutions for reducing or minimizing excess sludge production from wastewater biological treatment process.  相似文献   

19.
利用自行开发的混合呼吸速率测量仪在接种污泥的条件下对重庆某城市污水处理厂污水进行了呼吸速率测试(短期BOD测试,以呼吸速率测量重新进入内源呼吸阶段为结束);同时应用美国产BI-2000电解质呼吸仪在不接种污泥的条件下对该污水进行了BOD测试(长期BOD测试,理论上以污水中所有有机物矿化为结束)。对2种测试方法及其结果进行了比较,结果表明,2种方法得到的BCOD存在很大差异,短期BOD测试方法得到的结果仅为长期BOD测试方法得到的结果的40%~60%。通过批式呼吸测量方法测定了原废水中的活性异养微生物浓度XH(0),结果表明,XH(0)与BCODst之和与BCODlt比较接近,两者之比在0.88~1.02之间,平均值为0.94。  相似文献   

20.
亚铁羟基络合物还原转化水溶性偶氮染料   总被引:1,自引:1,他引:0  
偶氮染料是印染工艺中应用最广泛的一类染料,目前染料废水脱色是污水处理难题。亚铁混凝处理染料废水过程中可能存在亚铁的还原作用,本实验制备了比溶解态亚铁更具还原反应活性的亚铁羟基络合物(ferrous hydroxycomplex,FHC),以5种不同类型的水溶性偶氮染料为目标污染物,研究FHC还原水溶性偶氮染料的脱色性能。实验结果表明,FHC对活性艳红X-3B、酸性大红GR和阳离子红X-GRL有较好的还原脱色效果,仅投加含铁89.6 mg/L的FHC,染料脱色率达到90%以上,继续增大FHC投加量可以完全脱色;中性枣红GRL的FHC还原脱色效果较差,需加入313.6 mg/L的FHC才能达到90%以上脱色率;134.4 mg/L的FHC能够将直接耐酸大红4BS完全脱色,但其脱色主要以混凝沉淀为主;溶液pH对FHC的还原性能产生重要影响,FHC还原染料脱色的适宜的pH值范围为4~10。该研究为亲水性染料脱色提供了一种新的技术,也为FHC运用于印染废水脱色提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号