共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for developing synergies between climate change mitigation and adaptation has become a recent focus of both climate research and policy. Presumably the interest in synergies springs from the appeal of creating win–win situations by implementing a single climate policy option. However, institutional complexity, insufficient opportunities and uncertainty surrounding their efficiency and effectiveness present major challenges to the widespread development of synergies. There are also increasing calls for research to define the optimal mix of mitigation and adaptation. These calls are based on the misguided assumption that there is one single optimal mix of adaptation and mitigation options for all possible scenarios of climate and socio-economic change, notwithstanding uncertainty and irrespective of the diversity of values and preferences in society. In the face of current uncertainty, research is needed to provide guidance on how to develop a socially and economically justifiable mix of mitigation, adaptation and development policy, as well as on which elements would be part of such a mix. Moreover, research is needed to establish the conditions under which the process of mainstreaming can be most effective. Rather than actually developing and implementing specific mitigation and adaptation options, the objective of climate policy should be to facilitate such development and implementation as part of sectoral policies. Finally, analysis needs to focus on the optimal use and expected effectiveness of financial instruments, taking into account the mutual effects between these instruments on the one hand, and national and international sectoral investments and official development assistance on the other. 相似文献
2.
Despite the considerable progress made in the last decade towards building governance systems for climate change adaptation in Africa, implementation still limits positive responses. This study applies an iterative process of field assessments and literature reviews across multiple governance levels and spatial scales to identify constraints to effective formulation and implementation of climate change related policies and strategies in Uganda. Data was collected through sex-segregated participatory vulnerability assessments with farming communities in Rakai district, policy document reviews, and interviews with policy actors at national and district levels. Findings reveal that the key challenges to effective policy implementation are diverse and cut across the policy development and implementation cycle. Policies are mainly developed by central government agencies; other actors are insufficiently involved while local communities are excluded. There is also a communication disconnect between national, district, and community levels. Coupled with limited technical capacity and finances, political interference, and absence of functional implementation structures across these levels, climate change adaptation becomes constrained. We propose strategies that enhance linkages between levels and actors, which will improve policy formulation, implementation and ultimately adaptation by smallholders. 相似文献
3.
The climate impacts of energy technologies are frequently assessed using equivalency metrics, which convert emissions of multiple greenhouse gases to a common scale. Numerous metrics have been proposed that incorporate, in different ways, information about the time-dependent impacts of gases. However, more focus has been placed on proposing metrics than on testing their performance in real-world use cases. Here we present a testing approach that simulates how metrics would affect the selection of energy technology portfolios that comply with a CO 2-equivalent emissions cap. Unintended radiative forcing outcomes can occur, emphasizing the need to test metrics in a practical context. We demonstrate the approach for policies designed to limit radiative forcing and discuss extensions to limits on temperature or economic impacts. Metric performance is evaluated by (i) how much actual radiative forcing overshoots the intended stabilization level and (ii) the level of energy consumption permitted. We use this testing approach to study a variety of metrics based on an estimated radiative forcing stabilization time under two climate policy goals. We find that these goal-inspired metrics, if chosen carefully, can exhibit performance improvements over the standard global warming potential (GWP) while maintaining its transparency and ease-of-use. These alternative metrics can significantly reduce the overshoot in radiative forcing observed with the GWP, at a small cost in energy consumption. Moreover, simple metrics can exhibit similar performance improvements to more complex ones. 相似文献
4.
This paper models the unemployment effects of restrictions on greenhouse gas emissions, embodying two of the most significant types of short-term economic imperfections that generate unemployment: sectoral rigidities in labor mobility and sectoral rigidities in wage adjustments. A labor policy is also analyzed that would reduce the direct negative economic effects of the emissions restrictions.The politics of limiting greenhouse gas emissions are often dominated by relatively short-term considerations. Yet the current economic modeling of emissions limitations does not embody economic features that are likely to be particularly important in the short term, in particular, the politically sensitive unemployment rate. Moreover, only a few of these studies also consider policies that would offset the negative direct economic effects of emissions restrictions. For plausible estimates of the parameters, the model shows that, with the labor market imperfections, if there were no offsetting policies, the reductions in GNP in the U.S. in the first 10 years after emissions restrictions were imposed would be as much as 4%. However, if there were two policies, instead of just one: a counteracting labor market policy, as well as the emissions restrictions, the negative direct economic effects could be completely eliminated. 相似文献
5.
Climate change adaptation and mitigation decisions made by governments are usually taken in different policy domains. At the individual level however, adaptation and mitigation activities are undertaken together as part of the management of risk and resources. We propose that a useful starting point to develop a national climate policy is to understand what societal response might mean in practice. First we frame the set of responses at the national policy level as a trade off between investment in the development and diffusion of new technology, and investment in encouraging and enabling society to change its behaviour and or adopt the new technology. We argue that these are the pertinent trade-offs, rather than those usually posited between climate change mitigation and adaptation. The preference for a policy response that focuses more on technological innovation rather than one that focuses on changing social behaviour will be influenced by the capacity of different societies to change their greenhouse gas emissions; by perceived vulnerability to climate impacts; and by capacity to modify social behaviour and physical environment. Starting with this complete vision of response options should enable policy makers to re-evaluate the risk environment and the set of response options available to them. From here, policy makers should consider who is responsible for making climate response decisions and when actions should be taken. Institutional arrangements dictate social and political acceptability of different policies, they structure worldviews, and they determine the provision of resources for investment in technological innovation and social change. The importance of focussing on the timing of the response is emphasised to maximise the potential for adjustments through social learning and institutional change at different policy scales. We argue that the ability to respond to climate change is both enabled and constrained by social and technological conditions. The ability of society to respond to climate change and the need for technological change for both decarbonisation and for dealing with surprise in general, are central to concepts of sustainable development. 相似文献
6.
Water is scarce in Mediterranean countries: cities are crowded with increasing demand; food is produced with large amounts of water; ecosystems demand more water that is often available; drought affects all. As climate change impacts become more noticeable and costlier, some current water management strategies will not be useful. According to the findings of CIRCE, the areas with limited water resources will increase in the coming decades with major consequences for the way we produce food and we protect ecosystems. Based on these projections this paper discusses water policy priorities for climate change adaptation in the Mediterranean. We first summarise the main challenges to water resources in Mediterranean countries and outline the risks and opportunities for water under climate change based on previous studies. Recognising the difficulty to go from precipitation to water policy, we then present a framework to evaluate water availability in response to natural and management conditions, with an example of application in the Ebro basin that exemplifies other Mediterranean areas. Then we evaluate adaptive capacity to understand the ability of Mediterranean countries to face, respond and recover from climate change impacts on water resources. Social and economic factors are key drivers of inequality in the adaptive capacity across the region. Based on the assessment of impacts and adaptive capacity we suggest thresholds for water policy to respond to climate change and link water scarcity indicators to relevant potential adaptation strategies. Our results suggest the need to further prioritise socially and economically sensitive policies. 相似文献
7.
Both Europe and China have announced targets for greenhouse gas emissions reduction and renewable energy development. To achieve their emissions targets, Europe has introduced emissions trading scheme (ETS) since 2005 and China has planned to establish a national ETS in 2015. We assess the impact of a joint Europe-China ETS when both climate and energy policy instruments are simulated in a multiregional general equilibrium model. Our results show that a joint ETS markedly increases total carbon emissions from fossil fuels even though global mitigation costs are reduced. Moreover, a joint ETS helps China achieve its renewable energy target, but for Europe, it works opposite. While the renewable energy target does not help Europe achieve additional abatement, the renewable energy target in China reduces mitigation costs and emissions, and increases renewable energy consumption and sales of carbon allowances. Financial transfer through a joint ETS remains marginal compared to China’s demand for renewable energy subsidies. We conclude that as long as an absolute emissions cap is missing in China, a joint ETS is not attractive for mitigation and China’s renewable energy target can reduce emissions. 相似文献
8.
Planting urban trees and expanding urban forest canopy cover are often considered key strategies for reducing climate change impacts in urban areas. However, urban trees and forests can also be vulnerable to climate change through shifts in tree habitat suitability, changes in pests and diseases, and changes in extreme weather events. We developed a three-step framework for urban forest vulnerability assessment and adaptation that scales from regional assessment to local on-the-ground action. We piloted this framework in the Chicago region in 10 locations representing an urban-exurban gradient across a range of socioeconomic capacities. The majority of trees across a seven-county region had low to moderate vulnerability, but many of the least vulnerable species were nonnative invasive species. Urban forests in the 10 pilot locations ranged in vulnerability largely due to differences in economic and organizational adaptive capacity. Adaptation actions selected in these locations tended to focus on increased biodiversity and restoration of natural disturbance regimes. However, adaptation actions in more developed sites also included incorporating new species or cultivars. Lessons learned from the pilot area can be used to inform future efforts in other urban areas. 相似文献
9.
The restricted definition of “climate change” used by the Framework Convention on Climate Change (FCCC) has profoundly affected the science, politics, and policy processes associated with the international response to the climate issue. Specifically, the FCCC definition has contributed to the gridlock and ineffectiveness of the global response to the challenge of climate change. This paper argues that the consequences of misdefining “climate change” create a bias against adaptation policies and set the stage for the politicization of climate science. The paper discusses options for bringing science, policy and politics in line with a more appropriate definition of climate change such as the more comprehensive perspective used by the Intergovernmental Panel on Climate Change. 相似文献
10.
Climate change impacts on the hydrological cycle, e.g. leading to changes of precipitation patterns, have been observed over several decades. Higher water temperatures and changes in extremes hydrometeorological events (including floods and droughts) are likely to exacerbate different types of pressures on water resources with possible negative impacts on ecosystems and human health. In addition, sea-level rise is expected to extend areas of salinisation of groundwater and estuaries, resulting in a decrease of freshwater availability for humans and ecosystems in coastal areas. Furthermore, climate-related changes in water quantity and quality are expected to affect food availability, water access and utilisation, especially in arid and semi-arid areas, as well as the operation of water infrastructure (e.g. hydropower, flood defences, and irrigation systems). This paper serves as an introduction to the special issue of Environment Science & Policy dealing with climate change impacts on water-related disasters. It provides a brief background about relevant EU water policies and examples of EU-funded research trends which illustrate on-going efforts to improve understanding and modelling of climate changes related to the hydrological cycles at scales that are relevant to decision making (possibly linked to policy). 相似文献
11.
Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land-climate systems to assess how changes in electricity and land use, induced by climate change mitigation, impact on water demand under alternative socioeconomic (Shared Socioeconomic Pathways) and water policy assumptions (irrigation of bioenergy crops, cooling technologies for electricity generation). The impacts of climate change mitigation on cumulated global water demand across the century are highly uncertain, and depending on socioeconomic and water policy conditions, they range from a reduction of 15,000 km 3 to an increase of more than 160,000 km 3. The impact of irrigation of bioenergy crops is the most prominent factor, leading to significantly higher water requirements under climate change mitigation if bioenergy crops are irrigated. Differences in socioeconomic drivers and fossil fuel availability result in significant differences in electricity and bioenergy demands, in the associated electricity and primary energy mixes, and consequently in water demand. Economic affluence and abundance of fossil fuels aggravate pressures on water resources due to higher energy demand and greater deployment of water intensive technologies such as bioenergy and nuclear power. The evolution of future cooling systems is also identified as an important determinant of electricity water demand. Climate policy can result in a reduction of water demand if combined with policies on irrigation of bioenergy, and the deployment of non-water-intensive electricity sources and cooling types. 相似文献
12.
Industrial symbioses (ISs) and eco-industrial parks (EIPs) are key concepts of industrial ecology (IE). The aim of ISs and EIPs is to minimise inefficient material and energy use by utilising local by-product and energy flows. Industrial symbioses tend to develop through spontaneous action of economic actors, for gaining of economic benefit, but these systems can be designed and promoted via policy instruments as well. A literature review showed that national programmes for eco-industrial parks can be found in different parts of the world. In the action programmes and other sustainable consumption and production (SCP) policy documents of the EU, on the other hand, industrial symbioses gain less recognition as a path to enhanced sustainable production. In this article, we consider this and also analyse how the evolution and environmental performance of an industrial symbiosis system centred on a Finnish pulp and paper mill have been affected by SCP policy instruments. With regard to the system forming the subject of the case study, and Finnish industrial systems in general, policy instruments have succeeded in reducing emissions but not in systematically encouraging operators toward symbiosis-like activities. All in all, few studies exist on the overall impact of policy instruments promoting design of eco-industrial parks. It is not self-evident that symbiosis-like production systems would be sustainable in every case, as the background assumptions for political promotion of EIPs suggest. We concluded that industrial symbioses should be analysed and developed on a life cycle basis, with documentation of the real environmental benefits due to efficient resource use and decreased emissions in comparison to standalone production. ISs can then bring eco-competitiveness to companies in relation to SCP tools, such as environmental permits, ecolabels, and future product regulation based on the Ecodesign Directive in Europe. Indirect encouragement of symbiosis through land-use regulation and planning, in such a way that material fluxes between companies are possible both in operations and in financial terms, may prove effective. The same holds for waste policies that encourage increased reuse of a company’s waste by other enterprises. 相似文献
13.
To study mitigation and adaptation to climate change, social scientists have drawn on different approaches, particularly sociological approaches to the future and comparative history of past societies. These two approaches frame the social and temporal boundaries of decision-making collectivities in different ways. A consideration of the responses to climate variability in three historical cases, the Classic Maya of Mexico and Central America, the Viking settlements in Greenland, and the US Dust Bowl, shows the value of integrating these two approaches. 相似文献
14.
Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the analyses suggest increasing technical efficiency would be the most viable solution if/when the US adopts a greenhouse gas reduction policy. 相似文献
15.
Government interventions have been identified as important for energy systems change, because they can either facilitate or hinder transitions toward more sustainable energy systems. This article analyses how bioenergy options have been framed in Finnish policy strategies and how the framing has changed over time. The empirical material includes the content of 15 government programmes and nine national energy/climate strategies. On the basis of this assessment, both the link between bioenergy framings in strategies and the actual transformation of Finnish bioenergy systems are explored.On the basis of bioenergy framings, the development of energy policy can be divided into three phases: support for domestic energy sources in 1979-1991, support for wood- and industry-based bioenergy in 1992-1998, and diversified bioenergy in the context of climate change in 1999-2010. For two decades, primarily wood-based bioenergy was supported despite alternative technological developments occurring elsewhere. After the turn of the millennium, the importance of climate policy increased and alternative bioenergy sources were raised on the government policy agenda, also resulting in some new policy instruments. Rather than adopting a visionary outlook to guide system transformation, climate and energy policy has strengthened those technological options that have been selected elsewhere. If public policies are to enhance the shift toward low-carbon, sustainable energy systems, they would need to be more comprehensive, be more consistent over time, and emphasise energy use more. 相似文献
16.
This paper discusses the specific features of the energy in China, and addresses those key challenges in China is that the coexist of (1) higher total energy production and lower per capita level; (2) lower per capita energy resources level with unrational energy consumption structure; (3) lower energy utilization efficiency and higher energy conservation potential; and (4) unequal distribution of energy resources. It reviews the key environmental problems related to the feature of energy production and consumption. Based on the analysis, the author furthers addresses the policy and actions needed. 相似文献
18.
Disaster risk management, particularly management of climate-related risks, has become central to the international policy agenda. Reducing hazard-related loss and damage relies heavily on scientific inputs. Science, in turn, relies on data—in this case 1) risk-related data on hazards, exposure and vulnerability, and 2) data on associated loss and damage outcomes. The latter, data on losses and damage, are also post-2015 international policy outcome indicators at the highest level, required for countries’ monitoring of progress in reducing disaster risk, adapting to climate change, and achieving sustainable development. Although the quantity and accessibility of loss and damage data are improving, a number of issues continue to constrain their potential. These include needs for more consistent cataloguing of hazards and extreme events, more systematic and accurate documentation of per-event losses and damage, more precise cross-referencing of hazard events with associated loss and damage, and improved standardization and interoperability among databases. We identify measures for improvement in this regard, both for research purposes and for post-2015 international policy implementation. 相似文献
19.
Green roofs contribute to both climate change adaptation and mitigation. Promoting green roofs is thus a key element in urban strategies to address climate change. How to actually promote green roofs, however, has so far proven elusive: attempts to link specific policy instruments to a more or less successful diffusion of green roofs have been few and far between. The present paper relies on institutional economics to advance the present understanding of the link between policy instruments and green roofs. It argues that different green roofs are confronted with different social dilemmas, and thus require different policy instruments. Specifically, small green roofs face a free-rider problem, which is best addressed through regulations and incentives. Large green roofs face instead a collective action problem, which is best addressed through communications and network-building. This perspective is tested empirically through a comparative analysis of 18 global cities on the forefront in the promotion of green roofs. The policy instruments observed in these cities match with the theoretical expectations laid down in the paper. Implications emerge for both policy and research. 相似文献
20.
This two-part paper considers the complementarity between adaptation and mitigation in managing the risks associated with
the enhanced greenhouse effect. Part one reviews the application of risk management methods to climate change assessments.
Formal investigations of the enhanced greenhouse effect have produced three generations of risk assessment. The first led
to the United Nations Intergovernmental Panel on Climate Change (IPCC), First Assessment Report and subsequent drafting of
the United Nations Framework Convention on Climate Change. The second investigated the impacts of unmitigated climate change
in the Second and Third IPCC Assessment Reports. The third generation, currently underway, is investigating how risk management
options can be prioritised and implemented. Mitigation and adaptation have two main areas of complementarity. Firstly, they
each manage different components of future climate-related risk. Mitigation reduces the number and magnitude of potential
climate hazards, reducing the most severe changes first. Adaptation increases the ability to cope with climate hazards by
reducing system sensitivity or by reducing the consequent level of harm. Secondly, they manage risks at different extremes
of the potential range of future climate change. Adaptation works best with changes of lesser magnitude at the lower end of
the potential range. Where there is sufficient adaptive capacity, adaptation improves the ability of a system to cope with
increasingly larger changes over time. By moving from uncontrolled emissions towards stabilisation of greenhouse gases in
the atmosphere, mitigation limits the upper part of the range. Different activities have various blends of adaptive and mitigative
capacity. In some cases, high sensitivity and low adaptive capacity may lead to large residual climate risks; in other cases,
a large adaptive capacity may mean that residual risks are small or non-existent. Mitigative and adaptive capacity do not
share the same scale: adaptive capacity is expressed locally, whereas mitigative capacity is different for each activity and
location but needs to be aggregated at the global scale to properly assess its potential benefits in reducing climate hazards.
This can be seen as a demand for mitigation, which can be exercised at the local scale through exercising mitigative capacity.
Part two of the paper deals with the situation where regional bodies aim to maximise the benefits of managing climate risks
by integrating adaptation and mitigation measures at their various scales of operation. In north central Victoria, Australia,
adaptation and mitigation are being jointly managed by a greenhouse consortium and a catchment management authority. Several
related studies investigating large-scale revegetation are used to show how climate change impacts and sequestration measures
affect soil, salt and carbon fluxes in the landscape. These studies show that trade-offs between these interactions will have
to be carefully managed to maximise their relative benefits. The paper concludes that when managing climate change risks,
there are many instances where adaptation and mitigation can be integrated at the operational level. However, significant
gaps between our understanding of the benefits of adaptation and mitigation between local and global scales remain. Some of
these may be addressed by matching demands for mitigation (for activities and locations where adaptive capacity will be exceeded)
with the ability to supply that demand through localised mitigative capacity by means of globally integrated mechanisms. 相似文献
|