首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Objective: Understanding the various factors that affect accident risk is of particular concern to decision makers and researchers. The incorporation of real-time traffic and weather data constitutes a fruitful approach when analyzing accident risk. However, the vast majority of relevant research has no specific focus on vulnerable road users such as powered 2-wheelers (PTWs). Moreover, studies using data from urban roads and arterials are scarce. This study aims to add to the current knowledge by considering real-time traffic and weather data from 2 major urban arterials in the city of Athens, Greece, in order to estimate the effect of traffic, weather, and other characteristics on PTW accident involvement.

Methods: Because of the high number of candidate variables, a random forest model was applied to reveal the most important variables. Then, the potentially significant variables were used as input to a Bayesian logistic regression model in order to reveal the magnitude of their effect on PTW accident involvement.

Results: The results of the analysis suggest that PTWs are more likely to be involved in multivehicle accidents than in single-vehicle accidents. It was also indicated that increased traffic flow and variations in speed have a significant influence on PTW accident involvement. On the other hand, weather characteristics were found to have no effect.

Conclusions: The findings of this study can contribute to the understanding of accident mechanisms of PTWs and reduce PTW accident risk in urban arterials.  相似文献   


2.
《Safety Science》2003,41(1):1-14
Increasing amount of road traffic in 1990s has drawn much attention in Korea due to its influence on safety problems. Various types of data analyses are done in order to analyze the relationship between the severity of road traffic accident and driving environmental factors based on traffic accident records. Accurate results of such accident data analysis can provide crucial information for road accident prevention policy. In this paper, we use various algorithms to improve the accuracy of individual classifiers for two categories of severity of road traffic accident. Individual classifiers used are neural network and decision tree. Mainly three different approaches are applied: classifier fusion based on the Dempster–Shafer algorithm, the Bayesian procedure and logistic model; data ensemble fusion based on arcing and bagging; and clustering based on the k-means algorithm. Our empirical study results indicate that a clustering based classification algorithm works best for road traffic accident classification in Korea.  相似文献   

3.
IntroductionDriving environment, including road surface conditions and traffic states, often changes over time and influences crash probability considerably. It becomes stretched for traditional crash frequency models developed in large temporal scales to capture the time-varying characteristics of these factors, which may cause substantial loss of critical driving environmental information on crash prediction.MethodCrash prediction models with refined temporal data (hourly records) are developed to characterize the time-varying nature of these contributing factors. Unbalanced panel data mixed logit models are developed to analyze hourly crash likelihood of highway segments. The refined temporal driving environmental data, including road surface and traffic condition, obtained from the Road Weather Information System (RWIS), are incorporated into the models.ResultsModel estimation results indicate that the traffic speed, traffic volume, curvature and chemically wet road surface indicator are better modeled as random parameters. The estimation results of the mixed logit models based on unbalanced panel data show that there are a number of factors related to crash likelihood on I-25. Specifically, weekend indicator, November indicator, low speed limit and long remaining service life of rutting indicator are found to increase crash likelihood, while 5-am indicator and number of merging ramps per lane per mile are found to decrease crash likelihood.ConclusionsThe study underscores and confirms the unique and significant impacts on crash imposed by the real-time weather, road surface, and traffic conditions. With the unbalanced panel data structure, the rich information from real-time driving environmental big data can be well incorporated.  相似文献   

4.
Objectives: This research aims to identify and analyze the factors affecting accident severity through a macroscopic analysis, with a focus on the comparison between inside and outside urban areas. Disaggregate road accident data for Greece for the year 2008 were used. Methods: Two models were developed, one for inside and one for outside urban areas. Because the dependent variable had 2 categories, killed/severely injured (KSI) and slightly injured (SI), the binary logistic regression analysis was selected. Furthermore, this research aims to estimate the probability of fatality/severe injury versus slight injury as well as to calculate the odds ratios (relative probabilities) for various road accident configurations. The Hosmer and Lemeshow statistic and other diagnostic tests were conducted in order to assess the goodness-of-fit of the model. Results: From the application of the models, it appears that inside urban areas 3 types of collisions (sideswipe, rear-end, with fixed object/parked car), as well as involvement of motorcycles, bicycles, buses, 2 age groups (18-30 and older than 60?years old), time of accident, and location of the accident, seem to affect accident severity. Outside urban areas, 4 types of collisions (head-on, rear-end, side, sideswipe), weather conditions, time of accident, one age group (older than 60?years old), and involvement of motorcycles and buses were found to be significant. Conclusions: Factors affecting road accident severity only inside urban areas include young driver age, bicycles, intersections, and collision with fixed objects, whereas factors affecting severity only outside urban areas are weather conditions and head-on and side collisions, demonstrating the particular road users and traffic situations that should be focused on for road safety interventions for the 2 different types of networks (inside and outside urban areas). The methodology and the results of this research may provide a promising tool to prioritize programs and measures to improve road safety in Greece and worldwide.  相似文献   

5.
IntroductionThis study provides a systematic approach to investigate the different characteristics of weekday and weekend crashes.MethodWeekend crashes were defined as crashes occurring between Friday 9 p.m. and Sunday 9 p.m., while the other crashes were labeled as weekday crashes. In order to reveal the various features for weekday and weekend crashes, multi-level traffic safety analyses have been conducted. For the aggregate analysis, crash frequency models have been developed through Bayesian inference technique; correlation effects of weekday and weekend crash frequencies have been accounted. A multivariate Poisson model and correlated random effects Poisson model were estimated; model goodness-of-fits have been compared through DIC values. In addition to the safety performance functions, a disaggregate crash time propensity model was calibrated with Bayesian logistic regression model. Moreover, in order to account for the cross-section unobserved heterogeneity, random effects Bayesian logistic regression model was employed.ResultsIt was concluded that weekday crashes are more probable to happen during congested sections, while the weekend crashes mostly occur under free flow conditions. Finally, for the purpose of confirming the aforementioned conclusions, real-time crash prediction models have been developed. Random effects Bayesian logistic regression models incorporating the microscopic traffic data were developed. Results of the real-time crash prediction models are consistent with the crash time propensity analysis. Furthermore, results from these models would shed some lights on future geometric improvements and traffic management strategies to improve traffic safety.Impact on IndustryUtilizing safety performance to identify potential geometric improvements to reduce crash occurrence and monitoring real-time crash risks to pro-actively improve traffic safety.  相似文献   

6.
Objective: Most of the extensive research dedicated to identifying the influential factors of hit-and-run (HR) crashes has utilized typical maximum likelihood estimation binary logit models, and none have employed real-time traffic data. To fill this gap, this study focused on investigating factors contributing to HR crashes, as well as the severity levels of HR.

Methods: This study analyzed 4-year crash and real-time loop detector data by employing hierarchical Bayesian models with random effects within a sequential logit structure. In addition to evaluation of the impact of random effects on model fitness and complexity, the prediction capability of the models was examined. Stepwise incremental sensitivity and specificity were calculated and receiver operating characteristic (ROC) curves were utilized to graphically illustrate the predictive performance of the model.

Results: Among the real-time flow variables, the average occupancy and speed from the upstream detector were observed to be positively correlated with HR crash possibility. The average upstream speed and speed difference between upstream and downstream speeds were correlated with the occurrence of severe HR crashes. In addition to real-time factors, other variables found influential for HR and severe HR crashes were length of segment, adverse weather conditions, dark lighting conditions with malfunctioning street lights, driving under the influence of alcohol, width of inner shoulder, and nighttime.

Conclusions: This study suggests the potential traffic conditions of HR and severe HR occurrence, which refer to relatively congested upstream traffic conditions with high upstream speed and significant speed deviations on long segments. The above findings suggest that traffic enforcement should be directed toward mitigating risky driving under the aforementioned traffic conditions. Moreover, enforcement agencies may employ alcohol checkpoints to counter driving under the influence (DUI) at night. With regard to engineering improvements, wider inner shoulders may be constructed to potentially reduce HR cases and street lights should be installed and maintained in working condition to make roads less prone to such crashes.  相似文献   


7.
基于贝叶斯网的交通事故机理分析   总被引:2,自引:1,他引:1  
针对道路交通事故的形成机理进行定性、定量研究,根据我国道路交通事故记录数据特征,应用贝叶斯网对事故发生概率进行定量分析.引入"驾驶员紧张度"和"道路线形合理度"两个隐节点,建立了事故分析的贝叶斯网多层隐类模型,采用最大似然估计方法确定了模型的边缘概率和条件概率.将贝叶斯网模型应用于国道104二级公路(K1310+000~K1330+000)的事故分析中,运用贝叶斯网分析软件包Netica对其历史事故记录数据进行分析.结果表明: 贝叶斯网不仅可以定量计算某种道路交通状态下的事故发生概率,而且可以找出影响事故概率的关键原因和最不利状态组合(事故概率最大时的道路交通状态).  相似文献   

8.
基于车速的交通事故贝叶斯预测   总被引:9,自引:6,他引:9  
为了降低交通事故的发生率 ,提高道路交通安全水平 ,提出了基于车速的贝叶斯预测方法来检测和预测交通事故。首先对车速与交通事故之间的关系进行分析。在分析的基础上 ,以车速为衡量对象 ,提出贝叶斯预测方法。通过使用车速观测数据 ,应用 χ2 检验 ,确定是否为异常数据 ;并通过最小风险的贝叶斯预测 ,确定该异常是否会导致交通事故。最后 ,绘出利用该贝叶斯预测方法进行交通事故预测的流程图  相似文献   

9.
Background: In China, despite the decrease in average road traffic fatalities per capita, the fatality rate and injury rate have been increasing until 2015. Purpose: This study aims to analyze the road traffic accident severity in China from a macro viewpoint and various aspects and illuminate several key causal factors. From these analyses, we propose possible countermeasures to reduce accident severity. Method: The severity of traffic accidents is measured by human damage (HD) and case fatality rate (CFR). Different categorizations of national road traffic census data are analyzed to evaluate the severity of different types of accidents and further to demonstrate the key factors that contribute to the increase in accident severity. Regional data from selected major municipalities and provinces are also compared with national traffic census data to verify data consistency. Results: From 2000 to 2016, the overall CFR and HD of road accidents in China have increased by 19.0% and 63.7%, respectively. In 2016, CFR of freight vehicles is 33.5% higher than average; late-night accidents are more fatal than those that occur at other periods. The speeding issue is severely becoming worse. In 2000, its CFR is only 5.3% higher than average, while in 2016, the number is 42.0%. Conclusion and practical implementation: A growing trend of accident severity was found to be contrasting to the decline of road traffic accidents. From the analysis of casual factors, it was confirmed that the release way of the impact energy and the protection worn by the victims are key variables contributing to the severity of road traffic accidents.  相似文献   

10.
Problem: Vulnerable road users comprise over half of all road accident victims in the EU and their safety situation is not improving as fast as for motorists. The paper examines factors affecting fatality risk of pedestrians, cyclists, motorcyclists, and moped riders in seven EU countries using data from CARE database. Method: Comparing accident severity indicators between countries is problematic because of data quality issues, different degree of underreporting, and different exposure levels. To avoid bias arising from these issues, fatality risk is modeled with binary logistic regression. Risk factors considered include accident location by area type, junction type, and traffic control, as well as lighting condition. Results are presented as odds ratios of fatal accident outcome in different countries under specific circumstances compared to reference conditions. It is shown that the error in OR values due to underreporting is small. Results and discussion: Wide confidence intervals of the odds ratios in some countries confirm problems with accident data quality. Fatality risk is always higher for non-urban versus urban area and for darkness versus daylight conditions, but the odds ratios are different for different countries. Inconsistent results are obtained for accident location with respect to junction and its control type. Possible reasons for these differences are suggested and discussed. Practical applications: The proposed method avoids the data quality bias of accident severity indicators, thus, it can be used in international comparisons of vulnerable road user accidents. The article findings also support the concept of changes in legislation, such as reducing the speed limit in urban areas in Poland at night. Generally, the experience of countries with low VRU fatality risk identified in the article can be transferred to those with a higher risk.  相似文献   

11.
Objective: Powered 2-wheeled motor vehicles (PTWs) are one of the most vulnerable categories of road users. Bearing that fact in mind, we have researched the effects of individual and environmental factors on the severity and type of injuries of PTW users. The aim was to recognize the circumstances that cause these accidents and take some preventive actions that would improve the level of road safety for PTWs.

Methods: In the period from 2001 to 2010, an analysis of 139 road accidents involving PTWs was made by the Faculty of Transport and Traffic Engineering in Belgrade. The effects of both individual (age, gender, etc.) and environmental factors (place of an accident, time of day, etc.) on the cause of accidents and severity and type of injuries of PTWs are reported in this article. Analyses of these effects were conducted using logistic regression, chi-square tests, and Pearson's correlation.

Results: Factors such as categories of road users, pavement conditions, place of accident, age, and time of day have a statistically significant effect on PTW injuries, whereas other factors (gender, road type; that is, straight or curvy) do not. The article also defines the interdependence of the occurrence of particular injuries at certain speeds. The results show that if PTW users died of a head injury, these were usually concurrent with chest injuries, injuries to internal organs, and limb injuries.

Conclusions: It has been shown that there is a high degree of influence of individual factors on the occurrence of accidents involving 2-wheelers (PTWs/bicycles) but with no statistically significant relation. Establishing the existence of such conditionalities enables identifying and defining factors that have an impact on the occurrence of traffic accidents involving bicyclists or PTWs. Such a link between individual factors and the occurrence of accidents makes it possible for system managers to take appropriate actions aimed at certain categories of 2-wheelers in order to reduce casualties in a particular area. The analysis showed that most of the road factors do not have a statistically significant effect on either category of 2-wheeler. Namely, the logistic regression analysis showed that there is a statistically significant effect of the place of accident on the occurrence of accidents involving bicyclists.  相似文献   


12.
IntroductionBicyclists are vulnerable users in the shared asset like roadways. However, people still prefer to use bicycles for environmental, societal, and health benefits. In India, the bicycle plays a role in supporting the mobility to more people at lower cost and are often associated with the urban poor. Bicyclists represents one of the road user categories with highest risk of injuries and fatalities. According to the report by the Ministry of Road Transport and Highways (Accidents, 2017) in India, there is a sharp increase in the number of fatal victims for bicyclists in 2017 over 2016. The number of cyclists killed jumped from 2,585 in 2016 to 3,559 in 2017, a 37.7% increase. Method: Few studies have only investigated the crash risk perceived by the bicyclists while interacting with other road users. The present paper investigates the injury severity of bicyclists in bicycle-vehicle crashes that occurred in the state of Tamilnadu, India during the nine year period (2009–2017). The analyses demonstrate that dividing bicycle-vehicle collision data into five clusters helps in reducing the systematic heterogeneity present in the data and identify the hidden relationship between the injury severity levels of bicyclists and cyclists demographics, vehicle, environmental, temporal cause for the crashes. Results: Latent Class Clustering (LCC) approach was used in the present study as a preliminary tool for the segmentation of 9,978 crashes. Later, logistic regression analysis was used to identify the factors that influence bicycle crash severity for the whole dataset as well as for the clusters that were obtained from the LCC model. Results of this study show that combined use of both techniques reveals further information that wouldn’t be obtained without prior segmentation of the data. Few variables such as season, weather conditions, and light conditions were significant for certain clusters that were hidden in the whole dataset. This study can help domain experts or traffic safety researchers to segment traffic crashes and develop targeted countermeasures to mitigate injury severity.  相似文献   

13.
我国道路交通事故特征分析与对策研究   总被引:22,自引:16,他引:6  
针对我国道路交通安全形势日益严峻的现状,在分析我国城市道路交通安全特点的基础上,从交通事故的发生机理出发,分析研究了道路交通事故的宏观规律。从安全系统工程的角度,提出通过制定科学合理的城市道路交通安全管理规划和建立健全城市交通事故紧急救援系统、加强交通参与者的交通安全意识、综合协调道路—交通流—管理者之间的关系,以消除道路交通系统中人的不安全行为和物的不安全状态。明确指出当前乃至今后交通安全的发展方向和趋势,规划长远、决策当前,彻底改变目前交通安全工作的事后处理状态,做到防患于未然。对提高交通安全宏观管理整体水平具有一定的借鉴作用和应用价值。  相似文献   

14.
IntroductionFreeway accidents are a leading cause of death in China, which also triggers substantial economic loss and an emotional burden to society. However, the internal mechanism of how microscopic kinetic parameters of vehicles influenced by road characteristics determine the occurrence of different types of accidents has not been explicitly studied. This research aimed to explore the “link role” of tire microscopic kinetic parameters in road characteristic variables and traffic accidents to aid in facilitating the traffic design and management, and thus to prevent traffic accident. Method: A mountain freeway in Zhejiang Province, China was used as the research object and the data used in this paper were obtained through a real-time vehicle experiment. Multiple estimation models, including the standard ordered logit (SOL) model, fixed parameters logit (FPL) model, and random parameters logit (RPL) model were established. Results: The findings show that road characteristics will affect the longitudinal kinetic characteristics of the vehicle and, consequently, map the level of risk of rear-end accidents. Driving compensation effects were also identified in this paper (i.e., the drivers tend to be more cautious in complicated driving circumstances). Another finding relating to the mountain freeway is that different tunnel characteristics (e.g., tunnel entrance and tunnel exit) have different effects on different types of traffic accidents. Practical Applications: The framework proposed in this article can provide new insight for researchers to enlarge the research subjects of both explanatory and outcome variables in accident analysis. Future research could be implemented to consider more driving conditions.  相似文献   

15.
ProblemThe severity of motorway accidents that occurred on the hard shoulder (HS) is higher than for the main carriageway (MC). This paper compares and contrasts the most important factors affecting the severity of HS and MC accidents on motorways in England.MethodUsing police reported accident data, the accidents that occurred on motorways in England are grouped into two categories (i.e., HS and MC) according to the location. A generalized ordered logistic regression model is then applied to identify the factors affecting the severity of HS and MC accidents on motorways. The factors examined include accident and vehicle characteristics, traffic and environment conditions, as well as other behavioral factors.ResultsResults suggest that the factors positively affecting the severity include: number of vehicles involved in the accident, peak-hour traffic time, and low visibility. Differences between HS and MC accidents are identified, with the most important being the involvement of heavy goods vehicles (HGVs) and driver fatigue, which are found to be more crucial in increasing the severity of HS accidents.Practical applicationsMeasures to increase awareness of HGV drivers regarding the risk of fatigue when driving on motorways, and especially the nearside lane, should be taken by the stakeholders.  相似文献   

16.
17.
IntroductionVehicles in transport sometimes leave the travel lane and encroach onto natural or artificial objects on the roadsides. These types of crashes are called run-off the road crashes, which account for a large proportion of fatalities and severe crashes to vehicle occupants. In the United States, there are about one million such crashes, with roadside features leading to one third of all road fatalities. Traffic barriers could be installed to keep vehicles on the roadways and to prevent vehicles from colliding with obstacles such as trees, boulder, and walls. The installation of traffic barriers would be warranted if the severity of colliding with the barrier would be less severe than colliding with other fix objects on the sides of the roadway. However, injuries and fatalities do occur when vehicle collide with traffic barriers. A comprehensive analysis of traffic barrier features is lacking due to the absence of traffic barrier features data. Previous research has focused on simulation studies or only a general evaluation of traffic barriers, without accounting for different traffic barrier features.MethodThis study is conducted using an extensive traffic barrier features database for the purpose of investigating the impact of different environmental and traffic barrier geometry on this type of crash severity. This study only included data related to two-lane undivided roadway systems, which did not involve median barrier crashes. Crash severity is modeled using a mixed binary logistic regression model in which some parameters are fixed and some are random.ResultsThe results indicated that the effects of traffic barrier height, traffic barrier offset, and shoulder width should not be separated, but rather considered as interactions that impact crash severity. Rollover, side slope height, alcohol involvement, road surface conditions, and posted speed limit are some factors that also impact the severity of these crashes. The effects of gender, truck traffic count, and time of a day were found to be best modeled with random parameters in this study. The effects of these risk factors are discussed in this paper.Practical applicationsResults from this study could provide new guidelines for the design of traffic barriers based upon the identified roadway and traffic barrier characteristics.  相似文献   

18.
为研究事故车辆影响下城市道路交通的特征,构建考虑车辆抢道行为的元胞自动机交通流模型,研究给定冲突区域长度下不同进车率和不同事故持续时间对城市道路交通流的影响。研究结果表明:事故车辆会诱发交通瓶颈,对城市交通产生显著干扰并形成拥堵带,且拥堵带向事故车辆上游传递。不同事故持续时间下交通流演化存在差异,道路平均车流量、车流平均密度随着事故持续时间的增加而增加,车辆平均速度随之减小。当道路中车辆较少(pin=0.3)且事故持续时间达到15 min时,交通处于严重拥堵状态;当道路中车辆较多(pin=0.5)、事故持续时间达到5 min时,交通即处于严重拥堵状态。研究结果可为优化城市交通事故处理机制提供依据。  相似文献   

19.
IntroductionThis study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models.MethodHierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections.ResultsThe study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study.Practical applicationAs a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume.  相似文献   

20.
Objectives: Each year, pedestrian injuries constitute over 40% of all road casualty deaths and up to 60% of all urban road casualty deaths in Ghana. This is as a result of the overwhelming dependence on walking as a mode of transport in an environment where there are high vehicular speeds and inadequate pedestrian facilities. The objectives of this research were to establish the (1) impact of traffic calming measures on vehicle speeds and (2) association between traffic calming measures and pedestrian injury severity in built-up areas in Ghana.

Method: Vehicle speeds were unobtrusively measured in 38 selected settlements, including 19 with traffic calming schemes and 19 without. The study design used in this research was a matched case–control. A regression analysis compared case and control casualties using a conditional logistic regression.

Results: Generally, the mean vehicle speeds and the proportion of vehicles exceeding the 50?km/h speed limit were significantly lower in settlements that have traffic calming measures compared to towns without any traffic calming measures. Additionally, the proportion of motorists who exceeded the speed limit was 30% or less in settlements that have traffic calming devices and the proportion who exceeded the speed limit was 60% or more in towns without any traffic calming measures. The odds of pedestrian fatality was significantly higher in settlements that have no traffic calming devices compared to those that have (odds ratio [OR]?=?1.98; 95% confidence interval, 1.09–4.43). The protective effects of a traffic calming scheme that has a speed table was notably higher than those where there were no speed tables.

Conclusion: It was clearly evident that traffic calming devices reduce vehicular speeds and, thus, the incidence and severity of pedestrian injuries in built-up areas in Ghana. However, the fact that they are deployed on arterial roads is increasingly becoming a road safety concern. Given the emerging safety challenges associated with speed calming measures, we recommend that their use be restricted to residential streets but not on arterial roads. Long-term solutions for improving pedestrian safety proposed herein include bypassing settlements along the highways to reduce pedestrians’ exposure to traffic collisions and adopting a modern way of enforcement such as evidence-based laser monitoring in conjunction with a punishment regime that utilizes the demerit points system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号