首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
A greenhouse experiment was conducted to evaluate the potential role of arbuscular mycorrhizal fungi (AMF) in encouraging revegetation of copper (Cu) mine tailings. Two native plant species, Coreopsis drummondii and Pteris vittata, together with a turf grass, Lolium perenne and a leguminous plant Trifolium repens associated with and without AMF Glomus mosseae were grown in Cu mine tailings to assess mycorrhizal effects on plant growth, mineral nutrition and metal uptake. Results indicated that symbiotic associations were successfully established between G. mosseae and all plants tested, and mycorrhizal colonization markedly increased plant dry matter yield except for L. perenne. The beneficial impacts of mycorrhizal colonization on plant growth could be largely explained by both improved P nutrition and decreased shoot Cu, As and Cd concentrations. The experiment provided evidence for the potential use of local plant species in combination with AMF for ecological restoration of metalliferous mine tailings.  相似文献   

2.
A rhizobox experiment was conducted to investigate degradation of decabromodiphenyl ether (BDE-209) in the rhizosphere of ryegrass and the influence of root colonization with an arbuscular mycorrhizal (AM) fungus. BDE-209 dissipation in soil varied with its proximity to the roots and was enhanced by AM inoculation. A negative correlation (P < 0.001, R2 = 0.66) was found between the residual BDE-209 concentration in soil and soil microbial biomass estimated as the total phospholipid fatty acids, suggesting a contribution of microbial degradation to BDE-209 dissipation. Twelve and twenty-four lower brominated PBDEs were detected in soil and plant samples, respectively, with a higher proportion of di- through hepta-BDE congeners in the plant tissues than in the soils, indicating the occurrence of BDE-209 debromination in the soil-plant system. AM inoculation increased the levels of lower brominated PBDEs in ryegrass. These results provide important information about the behavior of BDE-209 in the soil-plant system.  相似文献   

3.
Phenanthrene uptake by Medicago sativa L. was investigated under the influence of an arbuscular mycorrhizal fungus. Inoculation of lucerne with the arbuscular mycorrhizal fungus Glomus etunicatum L. resulted in higher phenanthrene accumulation in the roots and lower accumulation in the shoots compared to non-mycorrhizal controls. Studies on sorption and desorption of phenanthrene by roots and characterization of heterogeneity of mycorrhizal and non-mycorrhizal roots using solid-state 13C nuclear magnetic resonance spectroscopy (13C NMR) demonstrated that increased aromatic components due to mycorrhizal inoculation resulted in enhanced phenanthrene uptake by the roots but lower translocation to the shoots. Direct visualization using two-photon excitation microscopy (TPEM) revealed higher phenanthrene accumulation in epidermal cells of roots and lower transport into the root interior and stem in mycorrhizal plants than in non-mycorrhizal controls. These results provide some insight into the mechanisms by which arbuscular mycorrhizal inoculation may influence the uptake of organic contaminants by plants.  相似文献   

4.
A greenhouse pot experiment was conducted to investigate the colonization of alfalfa roots by the arbuscular mycorrhizal (AM) fungus Glomus etunicatum and application of the non-ionic surfactant Triton X-100 on DDT uptake by alfalfa and depletion in soil. Mycorrhizal colonization led to an increase in the accumulation of DDT in roots but a decrease in shoots. The combination of AM inoculation and Triton X-100 application enhanced DDT uptake by both the roots and shoots. Application of Triton X-100 gave much lower residual concentrations of DDT in the bulk soil than in the rhizosphere soil or in the bulk soil without Triton X-100. AM colonization significantly increased bacterial and fungal counts and dehydrogenase activity in the rhizosphere soil. The combined AM inoculation of plants and soil application of surfactant may have potential as a biotechnological approach for the decontamination of soil polluted with DDT.  相似文献   

5.
A greenhouse pot experiment was conducted to compare the phytoextraction efficiencies of Cd by hyper-accumulating Alfred stonecrop (Sedum alfredii Hance) and fast-growing perennial ryegrass (Lolium perenne L.) from a Cd-contaminated (1.6 mg kg−1) acidic soil, and their responses to the inoculations of two arbuscular mycorrhizal (AM) fungal strains, Glomus caledonium 90036 (Gc) and Glomus mosseae M47V (Gm). Ryegrass and stonecrop were harvested after growing for 9 and 27 wk, respectively. Without AM fungal inoculation, the weekly Cd extraction by stonecrop (8.0 μg pot−1) was 4.3 times higher than that by ryegrass (1.5 μg pot−1). Both Gc and Gm significantly increased (P < 0.05) root mycorrhizal colonization rates, soil acid phosphatase activities, and available P concentrations, and thereby plant P absorptions (except for Gm-inoculated ryegrass), shoot biomasses, and Cd absorptions (except for Gm-inoculated stonecrop), while only Gc-inoculated stonecrop significantly accelerated (P < 0.05) the phytoextraction efficiency of Cd by 78%. In addition, both Gc and Gm significantly decreased (P < 0.05) phytoavailable Cd concentrations by 21–38% via elevating soil pH. The results suggested the potential application of hyper-accumulating Alfred stonecrop associated with AM fungi (notably Gc) for both extraction and stabilization of Cd in the in situ treatment of Cd-contaminated acidic soil.  相似文献   

6.
Phytoremediation has been recognized as a cheap and eco-friendly technology which could be used for the remediation of organic pollutants, such as phenolic compounds. Besides, the extent to which plants react to environmental pollution might depend on rhizosphere processes such as mycorrhizal symbiosis. In the present work, phenol tolerance of transgenic tobacco hairy roots (HR), namely TPX1, colonized with an arbuscular mycorrhizal fungus (AMF) was studied. However, the question is whether AMF symbiosis can moderate adverse effects of phenol to the plant tissues. Thus, the antioxidative response as well as parameters of oxidative damage, like malondialdehyde (MDA) content, were determined. Antioxidative enzymes such as peroxidase, superoxide dismutase, ascorbate peroxidase were higher in TPX1 HR colonized with AMF, compared to wild type HR colonized by AMF, in the presence of increasing concentrations of the pollutant. Besides, MDA levels remained unaltered in TPX1 HR associated with AMF treated with the xenobiotic. These results, suggested that this culture could tolerate phenol and moreover, it has an efficient protective mechanism against phenol-induced oxidative damage, which is of great importance in the selection of species with remediation capacities. Thus, transgenic HR colonized with AMF could be considered as an interesting model system to study different processes which play a key role in the phytoremediation of organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号